Abstract

Robotics is undergoing dynamic progression with the spread of soft robots and compliant mechanisms. The mechanical models describing these systems are underactuated, having more degrees-of-freedom than inputs. The trajectory tracking control of underactuated systems is not straightforward. The solution of the inverse dynamics is not stable in all cases, as it only considers the actual state of the system. Therefore employing the advances of optimal control theory is a reasonable choice. However, the real-time application of these is challenging as the solution to the discretized optimization problems is numerically expensive. This paper presents a novel iterative approach to solving nonlinear optimal control problems. The authors first define the iteration formula after which the obtained equations are discretized to prepare the numerical solution, contrarily to the accessible works in the literature having reverse order. The main idea is to approximate the cost functional with a second-order expansion in each iteration step, which is then extremized to get the subsequent approximation of the optimum. In the case of nonlinear optimal control problems, the process leads to a sequence of time-variant linear–quadratic regulator (LQR) problems. The proposed technique was effectively applied to the trajectory tracking control of a flexible rotational-rotational joint (RR) manipulator. The case study showed that the initialization of the iteration is simple, and the convergence is rapid.

References

1.
Siciliano
,
B.
, and
Khatib
,
O.
, eds.,
2008
,
Springer Handbook of Robotics
,
Springer Berlin Heidelberg
,
Berlin/Heidelberg
.
2.
Seifried
,
R.
,
2014
,
Dynamics of Underactuated Multibody Systems, Vol. 205 of Solid Mechanics and Its Applications
,
Springer International Publishing
,
Cham, Switzerland
.
3.
El-Badawy
,
A. A.
, and
Shehata
,
M. M. G.
,
2015
, “
Anti-Sway Control of a Tower Crane Using Inverse Dynamics
,” Second International Conference on Engineering and Technology (
ICET 2014
),
Institute of Electrical and Electronics Engineers
, Cairo, Egypt, Apr.
19
20
.10.1109/ICEngTechnol.2014.7016747
4.
Lin
,
H.-T.
,
Leisk
,
G. G.
, and
Trimmer
,
B. A.
,
2013
, “
Acta Futura Soft Robots in Space: A Perspective for Soft Robotics
,”
Acta Futura
,
6
, pp.
69
79
.10.2420/AF06.2013.69
5.
Tanık
,
E.
,
2016
, “
Analysis and Design of an Underactuated Compliant Five-Bar Mechanism
,”
Mech. Mach. Theory
,
102
, pp.
123
134
.10.1016/j.mechmachtheory.2016.03.024
6.
Garcia
,
M.
,
McFall
,
K.
, and
Tekes
,
A.
,
2021
, “
Trajectory Control of Planar Closed Chain Fully Compliant Mechanism
,”
J. Mech. Sci. Technol.
,
35
(
4
), pp.
1711
1719
.10.1007/s12206-021-0334-5
7.
Ruse
,
M.
,
Travis
,
J.
, and
Wilson
,
E. O.
,
2009
,
Evolution: The First Four Billion Years
,
Harvard University Press
, Cambridge, MA.
8.
Collins
,
S. H.
,
Wisse
,
M.
, and
Ruina
,
A.
,
2001
, “
A Three-Dimensional Passive-Dynamic Walking Robot With Two Legs and Knees
,”
Int. J. Rob. Res.
,
20
(
7
), pp.
607
615
.10.1177/02783640122067561
9.
Kelly
,
R.
,
Santibáñez
,
V.
, and
Loría
,
A. A.
,
2005
,
Advanced Textbooks in Control and Signal Processing
,
Control of Robot Manipulators in Joint Space
,
Springer-Verlag
,
London
.
10.
Liu
,
J.
, and
Wang
,
X.
,
2011
,
Advanced Sliding Mode Control for Mechanical Systems
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg, Germany
.
11.
Blajer
,
W.
, and
Kołodziejczyk
,
K.
,
2014
, “
A Case Study of Inverse Dynamics Control of Manipulators With Passive Joints
,”
J. Theor. Appl. Mech.
,
52
(
3
), pp.
793
801
.http://jtam.pl/A-case-study-of-inverse-dynamicscontrol-of-manipulators-with-passive-joints-,102157,0,2.html
12.
Kovács
,
L. L.
,
Kövecses
,
J.
,
Zelei
,
A.
,
Bencsik
,
L.
, and
Stépán
,
G.
,
2011
, “
Servo-Constraint Based Computed Torque Control of Underactuated Mechanical Systems
,”
ASME
Paper No. DETC2011-48533.10.1115/DET C2011-48533
13.
Bencsik
,
L.
,
Kovács
,
L. L.
, and
Zelei
,
A.
,
2017
, “
Stabilization of Internal Dynamics of Underactuated Systems by Periodic Servo-Constraints
,”
Int. J. Struct. Stabil. Dyn.
,
17
(
05
), p.
1740004
.10.1142/S0219455417400041
14.
Seifried
,
R.
,
2009
, “
Optimization of the Internal Dynamics of Underactuated Robots
,”
PAMM
,
9
(
1
), pp.
625
626
.10.1002/pamm.200910283
15.
Liberzon
,
D.
,
2012
, “
Calculus of Variations and Optimal Control Theory: A Concise Introduction
,” Princeton University Press, Princeton, NJ, p.
235
.
16.
Lewis
,
F. L.
,
Vrabie
,
D. L.
, and
Syrmos
,
V. L.
,
2012
,
Optimal Control
,
Wiley
,
Hoboken, NJ
.
17.
Prasad
,
L. B.
,
Tyagi
,
B.
, and
Gupta
,
H. O.
,
2014
, “
Optimal Control of Nonlinear Inverted Pendulum System Using PID Controller and LQR: Performance Analysis Without and With Disturbance Input
,”
Int. J. Autom. Comput.
,
11
(
6
), pp.
661
670
.10.1007/s11633-014-0818-1
18.
Bodor
,
B.
, and
Bencsik
,
L.
,
2017
, “
Predictive Control of Robot Manipulators With Flexible Joints
,”
Proceedings of the Ninth European Nonlinear Dynamics Conference
, Budapest, Hungary, June
25
30
.
19.
Bodor
,
B.
,
Zelei
,
A.
, and
Bencsik
,
L.
,
2021
, “
Predictive Trajectory Tracking Algorithm of Underactuated Systems Based on the Calculus of Variations
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
8
), p.
081002
.10.1115/1.4051168
20.
Sage
,
A. P.
,
1977
,
Optimum Systems Control
,
Prentice Hall
, Englewood Cliffs, NJ.
21.
Kirk
,
D. E.
,
2004
,
Optimal Control Theory
,
Dover Publications
, Mineola, NY.
22.
Bertolazzi
,
E.
,
Biral
,
F.
, and
Lio
,
M. D.
,
2005
, “
Symbolic–Numeric Indirect Method for Solving Optimal Control Problems for Large Multibody Systems
,”
Multibody Syst. Dyn.
,
13
(
2
), pp.
233
252
.10.1007/s11044-005-3987-4
23.
Boscariol
,
P.
, and
Richiedei
,
D.
,
2018
, “
Robust Point-to-Point Trajectory Planning for Nonlinear Underactuated Systems: Theory and Experimental Assessment
,”
Rob. Comput. Integr. Manuf.
,
50
, pp.
256
265
.10.1016/j.rcim.2017.10.001
24.
Steiner
,
W.
, and
Reichl
,
S.
,
2012
, “
The Optimal Control Approach to Dynamical Inverse Problems
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
2
), p.
021010
.10.1115/1.4005365
25.
Lauß
,
T.
,
Oberpeilsteiner
,
S.
,
Steiner
,
W.
, and
Nachbagauer
,
K.
,
2017
, “
The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
3
), p.
031016
.10.1115/1.4035197
26.
Li
,
W.
, and
Todorov
,
E.
,
2004
, “
Iterative Linear Quadratic Regulator Design for Nonlinear Biological Movement Systems
,”
Proceedings of the First International Conference on Informatics in Control, Automation and Robotics
, Vol. 1, pp.
222
229
.10.5220/0001143902220229
27.
Alothman
,
Y.
,
Guo
,
M.
, and
Gu
,
D.
,
2017
, “
Using Iterative LQR to Control Two Quadrotors Transporting a Cable-Suspended Load
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
4324
4329
.10.1016/j.ifacol.2017.08.861
28.
Banks
,
S.
, and
Cimen
,
T.
,
2005
, “
Optimal Control of Nonlinear Systems
,”
Optimization and Control With Applications
,
Springer-Verlag
,
New York
, pp.
353
367
.
29.
Gelfand
,
I. M.
, and
Fomin
,
S. V.
,
2000
,
Calculus of Variations (Dover Books on Mathematics)
,
Dover Publications
, Mineola, NY.
30.
Weinstock
,
R.
,
1952
,
Calculus of Variations
,
McGraw-Hill Book Company
,
New York
.
31.
Ryaben'kii
,
V. S.
, and
Tsynkov
,
S. V.
,
2006
,
A Theoretical Introduction to Numerical Analysis
,
Taylor & Francis
, New York.
32.
Gockenbach
,
M.
, and
Liu
,
C.
,
2015
, “
Local Convergence of Newton's Method in the Classical Calculus of Variations
,”
Optimization
,
64
(
4
), pp.
957
980
.10.1080/02331934.2013.811664
33.
Nocedal
,
J.
, and
Wright
,
S. J.
,
1999
, “
Numerical Optimization
,”
Springer Series in Operations Research and Financial Engineering
,
Springer-Verlag
,
New York
.
34.
García de Jalón
,
J.
, and
Bayo
,
E.
,
1994
,
Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge
,
Springer-Verlag
, New York.
You do not currently have access to this content.