Generalized synchronization between two different nonlinear systems under influence of noise is studied with the help of an electronic circuit and numerical experiment. In the present case, we have studied the phenomena of generalized synchronization between the Lorenz system and another nonlinear system (modified Lorenz) proposed in Ray et al. (2011, “On the Study of Chaotic Systems With Non-Horseshoe Template,” Frontier in the Study of Chaotic Dynamical Systems With Open Problems, Vol. 16, E. Zeraoulia and J. C. Sprott, eds., World Scientific, Singapore, pp. 85–103) from the perspective of electronic circuits and corresponding data collected digitally. Variations of the synchronization threshold with coupling (between driver and driven system) and noise intensity have been studied in detail. Later, experimental results are also proved numerically. It is shown that in certain cases, noise enhances generalized synchronization, and in another it destroys generalized synchronization. Numerical studies in the latter part have also proved results obtained experimentally.

References

1.
Boccaletti
,
S.
,
Kurths
,
J.
,
Osipov
,
G.
,
Valladares
,
D. L.
, and
Zhou
,
C. S.
,
2002
, “
The Synchronization of Chaotic Systems
,”
Phys. Rep.
,
366
(
1–2
), pp.
1
101
.10.1016/S0370-1573(02)00137-0
2.
Heil
,
T.
,
Fischer
,
I.
,
Elsässer
,
W.
,
Mulet
,
J.
, and
Mirasso
,
C. R.
,
2001
, “
Chaos Synchronization and Spontaneous Symmetry-Breaking in Symmetrically Delay-Coupled Semiconductor Lasers
,”
Phys. Rev. Lett.
,
86
(
5
), pp.
795
798
.10.1103/PhysRevLett.86.795
3.
Wang
,
Q.
,
Duan
,
Z.
,
Perc
,
M.
, and
Chen
,
G.
,
2008
, “
Synchronization Transitions on Small-World Neuronal Networks: Effects of Information Transmission Delay and Rewiring Probability
,”
EPL
,
83
(
5
), p.
50008
.10.1209/0295-5075/83/50008
4.
Wang
,
Q.
,
Perc
,
M.
,
Duan
,
Z.
, and
Chen
,
G.
,
2010
, “
Impact of Delays and Rewiring on the Dynamics of Small-World Neuronal Networks With Two Types of Coupling
,”
Physica A
,
389
(
16
), pp.
3299
3306
.10.1016/j.physa.2010.03.031
5.
Wang
,
Q.
,
Perc
,
M. C. V.
,
Duan
,
Z.
, and
Chen
,
G.
,
2009
, “
Synchronization Transitions on Scale-Free Neuronal Networks Due to Finite Information Transmission Delays
,”
Phys. Rev. E
,
80
(
2
), p.
026206
.10.1103/PhysRevE.80.026206
6.
Sun
,
X.
,
Lei
,
J.
,
Perc
,
M.
,
Kurths
,
J.
, and
Chen
,
G.
,
2011
, “
Burst Synchronization Transitions in a Neuronal Network of Subnetworks
,”
Chaos
,
21
(
1
), p.
016110
.10.1063/1.3559136
7.
Senthilkumar
,
D. V.
,
Srinivasan
,
K.
,
Murali
,
K.
,
Lakshmanan
,
M.
, and
Kurths
,
J.
,
2010
, “
Experimental Confirmation of Chaotic Phase Synchronization in Coupled Time-Delayed Electronic Circuits
,”
Phys. Rev. E
,
82
(
6
), p.
065201
.10.1103/PhysRevE.82.065201
8.
Benzi
,
R.
,
Sutera
,
A.
, and
Vulpiani
,
A.
,
1981
, “
The Mechanism of Stochastic Resonance
,”
J. Phy. A
,
14
(
11
), pp.
L453
L457
.10.1088/0305-4470/14/11/006
9.
Pikovsky
,
A. S.
, and
Kurths
,
J.
,
1997
, “
Coherence Resonance in a Noise-Driven Excitable System
,”
Phys. Rev. Lett.
,
78
(
5
), pp.
775
778
.10.1103/PhysRevLett.78.775
10.
Liu
,
Z.
, and
Lai
,
Y.-C.
,
2001
, “
Coherence Resonance in Coupled Chaotic Oscillators
,”
Phys. Rev. Lett.
,
86
(
21
), pp.
4737
4740
.10.1103/PhysRevLett.86.4737
11.
Gammaitoni
,
L.
,
Hänggi
,
P.
,
Jung
,
P.
, and
Marchesoni
,
F.
,
1998
, “
Stochastic Resonance
,”
Rev. Mod. Phys.
,
70
(
1
), pp.
223
287
.10.1103/RevModPhys.70.223
12.
Zhou
,
C.
, and
Kurths
,
J.
,
2002
, “
Noise-Induced Phase Synchronization and Synchronization Transitions in Chaotic Oscillators
,”
Phys. Rev. Lett.
,
88
(
23
), p.
230602
.10.1103/PhysRevLett.88.230602
13.
Maritan
,
A.
, and
Banavar
,
J. R.
,
1994
, “
Chaos, Noise, and Synchronization
,”
Phys. Rev. Lett.
,
72
(
10
), pp.
1451
1454
.10.1103/PhysRevLett.72.1451
14.
Lai
,
C.-H.
, and
Zhou
,
C.
,
1998
, “
Synchronization of Chaotic Maps by Symmetric Common Noise
,”
EPL
,
43
(
4
), pp.
376
380
.10.1209/epl/i1998-00368-1
15.
Rulkov
,
N. F.
,
Sushchik
,
M. M.
,
Tsimring
,
L. S.
, and
Abarbanel
,
H. D. I.
,
1995
, “
Generalized Synchronization of Chaos in Directionally Coupled Chaotic Systems
,”
Phys. Rev. E
,
51
(
2
), pp.
980
994
.10.1103/PhysRevE.51.980
16.
Abarbanel
,
H. D. I.
,
Rulkov
,
N. F.
, and
Sushchik
,
M. M.
,
1996
, “
Generalized Synchronization of Chaos: The Auxiliary System Approach
,”
Phys. Rev. E
,
53
(
5
), pp.
4528
4535
.10.1103/PhysRevE.53.4528
17.
Kocarev
,
L.
, and
Parlitz
,
U.
,
1996
, “
Generalized Synchronization, Predictability, and Equivalence of Unidirectionally Coupled Dynamical Systems
,”
Phys. Rev. Lett.
,
76
(
11
), pp.
1816
1819
.10.1103/PhysRevLett.76.1816
18.
Dmitriev
,
B. S.
,
Hramov
,
A. E.
,
Koronovskii
,
A. A.
,
Starodubov
,
A. V.
,
Trubetskov
,
D. I.
, and
Zharkov
,
Y. D.
,
2009
, “
First Experimental Observation of Generalized Synchronization Phenomena in Microwave Oscillators
,”
Phys. Rev. Lett.
,
102
(
7
), p.
074101
.10.1103/PhysRevLett.102.074101
19.
Guan
,
S.
,
Lai
,
Y.-C.
, and
Lai
,
C.-H.
,
2006
, “
Effect of Noise on Generalized Chaotic Synchronization
,”
Phys. Rev. E
,
73
(
4
), p.
046210
.10.1103/PhysRevE.73.046210
20.
Pecora
,
L. M.
, and
Carroll
,
T. L.
,
1990
, “
Synchronization in Chaotic Systems
,”
Phys. Rev. Lett.
,
64
(
8
), pp.
821
824
.10.1103/PhysRevLett.64.821
21.
Lorenz
,
E. N.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
, pp.
130
141
.10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
22.
Ray
,
A.
,
Roychowdhury
,
A.
, and
Basak
,
S.
,
2011
, “
On the Study of Chaotic Systems With Non-Horseshoe Template
,”
Frontier in the Study of Chaotic Dynamical Systems With Open Problems
, Vol.
16
,
E.
Zeraoulia
and
J. C.
Sprott
, eds.,
World Scientific
,
Singapore
, pp.
85
103
.
You do not currently have access to this content.