This paper deals with implementation of the multistage Adomian decomposition method (MADM) to solve a class of nonlinear programming (NLP) problems, which are reformulated with a nonlinear system of fractional differential equations. The multistage strategy is used to investigate the relation between an equilibrium point of the fractional order dynamical system and an optimal solution of the NLP problem. The preference of the method lies in the fact that the multistage strategy gives this relation in an arbitrary longtime interval, while the Adomian decomposition method (ADM) gives the optimal solution just only in the neighborhood of the initial time. The numerical results taken by the fractional order MADM show that these results are compatible with the solution of NLP problem rather than the ADM. Furthermore, in some cases the fractional order MADM can perform more rapid convergency to the optimal solution of optimization problem than the integer order ones.

1.
Luenberger
,
D. G.
, 1973,
Introduction to Linear and Nonlinear Programming
,
Addison-Wesley
,
Reading, MA
.
2.
Sun
,
W.
, and
Yuan
,
Y. X.
, 2006,
Optimization Theory and Methods: Nonlinear Programming
,
Springer-Verlag
,
New York
.
3.
Arrow
,
K. J.
,
Hurwicz
,
L.
, and
Uzawa
,
H.
, 1958,
Studies in Linear and Non-Linear Programming
,
Stanford University Press
,
Palo Alto, CA
.
4.
Rosen
,
J. B.
, 1961, “
The Gradient Projection Method for Nonlinear Programming: Part II Nonlinear Constraints
,”
SIAM J. Appl. Math.
0036-1399,
9
(
4
), pp.
514
532
.
5.
Fiacco
,
A. V.
, and
Mccormick
,
G. P.
, 1968,
Nonlinear Programming: Sequential Unconstrained Minimization Techniques
,
Wiley
,
New York
.
6.
Yamashita
,
H.
, 1980, “
Differential Equation Approach to Nonlinear Programming
,”
Math. Program.
0025-5610,
18
(
1–3
), pp.
155
168
.
7.
Evtushenko
,
Yu. G.
, and
Zhadan
,
V. G.
, 1994, “
Stable Barrier-Projection and Barrier-Newton Methods in Nonlinear Programming
,”
Optim. Methods Software
1055-6788,
3
(
1–3
), pp.
237
256
.
8.
Jin
,
L.
,
Zhang
,
L. -W.
, and
Xiao
,
X.
, 2007, “
Two Differential Equation Systems for Equality-Constrained Optimization
,”
Appl. Math. Comput.
0096-3003,
190
(
2
), pp.
1030
1039
.
9.
Özdemir
,
N.
, and
Evirgen
,
F.
, 2010, “
A Dynamic System Approach to Quadratic Programming Problems With Penalty Method
,”
Bulletin of the Malaysian Mathematical Sciences Society
,
33
(
1
), pp.
79
91
.
10.
Özdemir
,
N.
, and
Evirgen
,
F.
, 2009, “
Solving NLP Problems With Dynamic System Approach Based on Smoothed Penalty Function
,”
Selçuk J. Appl. Math.
,
10
(
1
), pp.
63
73
.
11.
Wang
,
S.
,
Yang
,
X. Q.
, and
Teo
,
K. L.
, 2003, “
A Unified Gradient Flow Approach to Constrained Nonlinear Optimization Problems
,”
Comput. Optim. Appl.
0926-6003,
25
(
1–3
), pp.
251
268
.
12.
Oldham
,
K. B.
, and
Spanier
,
J.
, 1974,
The Fractional Calculus
,
Academic
,
New York
.
13.
Miller
,
K. S.
, and
Ross
,
B.
, 1993,
An Introduction to the Fractional Calculus and Fractional Differential Equations
,
Wiley
,
New York
.
14.
Podlubny
,
I.
, 1999,
Fractional Differential Equations
,
Academic
,
New York
.
15.
Podlubny
,
I.
, 2002, “
Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation
,”
Fractional Calculus Appl. Anal.
1311-0454,
5
(
4
), pp.
367
386
.
16.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
, 2008, “
Initialization of Fractional-Order Operators and Fractional Differential Equations
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
(
2
), p.
021101
.
17.
Machado
,
J. A. T.
, and
Galhano
,
A.
, 2008, “
Fractional Dynamics: A Statistical Perspective
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
(
2
), p.
021201
.
18.
He
,
J. H.
, 1997, “
Variational Iteration Method for Delay Differential Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
2
(
4
), pp.
235
236
.
19.
He
,
J. H.
, 1998, “
Approximate Analytical Solution for Seepage Flow With Fractional Derivative in Porous Media
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
167
(
1–2
), pp.
57
68
.
20.
He
,
J. H.
, 1999, “
Homotopy Perturbation Technique
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
178
(
3–4
), pp.
257
262
.
21.
He
,
J. H.
, 2000, “
A Coupling Method of Homotopy Technique and Perturbation Technique for Nonlinear Problems
,”
Int. J. Non-Linear Mech.
0020-7462,
35
(
1
), pp.
37
43
.
22.
Adomian
,
G.
, 1988, “
A Review of the Decomposition Method in Applied Mathematics
,”
J. Math. Anal. Appl.
0022-247X,
135
(
2
), pp.
501
544
.
23.
Adomian
,
G.
, 1994,
Solving Frontier Problems of Physics: The Decomposition Method
,
Kluwer Academic
,
Boston
.
24.
Biazar
,
J.
,
Babolian
,
E.
, and
Islam
,
R.
, 2003, “
Solution of the System of Volterra Integral Equations of the First Kind by Adomian Decomposition Method
,”
Appl. Math. Comput.
0096-3003,
139
(
2–3
), pp.
249
258
.
25.
Ray
,
S. S.
, and
Bera
,
R. K.
, 2005, “
An Approximate Solution of a Nonlinear Fractional Differential Equation by Adomian Decomposition Method
,”
Appl. Math. Comput.
0096-3003,
167
(
1
), pp.
561
571
.
26.
Shawagfeh
,
N. T.
, 2002, “
Analytical Approximate Solutions for Nonlinear Fractional Differential Equations
,”
Appl. Math. Comput.
0096-3003,
131
(
2–3
), pp.
517
529
.
27.
Jafari
,
H.
, and
Daftardar-Gejji
,
V.
, 2006, “
Solving System of Nonlinear Fractional Differential Equations Using Adomian Decomposition
,”
J. Comput. Appl. Math.
0377-0427,
196
(
2
), pp.
644
651
.
28.
El-Tawil
,
M. A.
,
Bahnasawi
,
A. A.
, and
Abdel-Naby
,
A.
, 2004, “
Solving Riccati Differential Equation Using Adomian’s Decomposition Method
,”
Appl. Math. Comput.
0096-3003,
157
(
2
), pp.
503
514
.
29.
Momani
,
S.
, and
Shawagfeh
,
N.
, 2006, “
Decomposition Method for Solving Fractional Riccati Differential Equations
,”
Appl. Math. Comput.
0096-3003,
182
(
2
), pp.
1083
1092
.
30.
Hock
,
W.
, and
Schittkowski
,
K.
, 1981,
Test Examples for Nonlinear Programming Codes
,
Springer-Verlag
,
Berlin
.
31.
Schittkowski
,
K.
, 1987,
More Test Examples For Nonlinear Programming Codes
,
Springer
,
Berlin
.
You do not currently have access to this content.