For most complex dynamic systems, it is not always possible to measure all system states by a direct measurement technique. Thus for dynamic characterization and controller design purposes, it is often necessary to design an observer in order to get an estimate of those states, which cannot be measured directly. In this work, the problem of designing state observers for free systems (linear as well as nonlinear) with time-periodic coefficients is addressed. It is shown that, for linear periodic systems, the observer design problem is the duality of the controller design problem. The state observer is constructed using a symbolic controller design method developed earlier using a Chebyshev expansion technique where the Floquet multipliers can be placed in the desired locations within the unit circle. For nonlinear time-periodic systems, an observer design methodology is developed using the Lyapunov–Floquet transformation and the Poincaré normal form technique. First, a set of time-periodic near identity coordinate transformations are applied to convert the nonlinear problem to a linear observer design problem. The conditions for existence of such invertible maps and their computations are discussed. Then the local identity observers are designed and implemented using a symbolic computational algorithm. Several illustrative examples are included to show the effectiveness of the proposed methods.

1.
Luenberger
,
D. G.
, 1964, “
Observing the State of a Linear System
,”
IEEE Trans. Mil. Electron.
0536-1559,
8
, pp.
74
80
.
2.
Simon
,
D.
, 2006,
Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches
,
Wiley
,
New York
.
3.
Thau
,
F. E.
, 1973, “
Observing the state of nonlinear dynamic system
,”
Int. J. Control
0020-7179,
17
, pp.
471
479
.
4.
Gauthier
,
J. P.
, and
Kupka
,
I. A. K.
, 1992, “
A Simple Observer for Nonlinear Systems, Application to Bioreactors
,”
IEEE Trans. Autom. Control
0018-9286,
37
, pp.
875
880
.
5.
Raghavan
,
S.
, and
Hedrick
,
J. K.
, 1994, “
Observer Design for a Class of Nonlinear System
,”
Int. J. Control
0020-7179,
59
, pp.
515
528
.
6.
Rajamani
,
R.
, and
Cho
,
Y. M.
, 1998, “
Existence and Design of Observers for Nonlinear Systems: Relation to Distance to Unobservability
,”
Int. J. Control
0020-7179,
69
, pp.
717
731
.
7.
Arcak
,
M.
, and
Kokotovic
,
P.
, 2001, “
Nonlinear Observers: A Circle Criterion Design and Robustness Analysis
,”
Automatica
0005-1098,
37
, pp.
1923
1930
.
8.
Krener
,
A. J.
, and
Isidori
,
A.
, 1983, “
Linearization by Output Injection and Nonlinear Observers
,”
Syst. Control Lett.
0167-6911,
3
, pp.
47
52
.
9.
Kazantzis
,
N.
, and
Kravaris
,
C.
, 1998, “
Nonlinear Observer Design Using Lyapunov’s Auxiliary Theorem
,”
Syst. Control Lett.
0167-6911,
34
, pp.
241
247
.
10.
Krener
,
A. J.
, and
Xiao
,
M.
, 2002, “
Nonlinear Observer Design in the Siegel Domain
,”
SIAM J. Control Optim.
0363-0129,
41
, pp.
932
953
.
11.
Krener
,
A. J.
, and
Xiao
,
M.
, 2004, “
Erratum: Nonlinear Observer Design in the Siegel Domain
,”
SIAM J. Control Optim.
0363-0129,
43
, pp.
377
378
.
12.
Krener
,
A. J.
, 2004, “
Nonlinear Observers
,”
Control Systems, Robotics and Automation
,
EOLSS Publishers
,
Oxford, UK
.
13.
Sinha
,
S. C.
, and
Joseph
,
P.
, 1994, “
Control of General Dynamic Systems With Periodically Varying Parameters via Liapunov–Floquet Transformation
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
116
, pp.
650
658
.
14.
Brunovsky
,
P.
, 1969, “
Controlibility and Linear Closed-Loop Controls in Linear Periodic Systems
,”
J. Differ. Equations
0022-0396,
6
, pp.
296
313
.
15.
Bittani
,
S.
, and
Colaneri
,
P.
, 1999, “
Periodic Control
,”
Encyclopedia of Electrical and Electronics Engineering
,
J.
Webster
, ed.,
Wiley
,
New York
, Vol.
66
, pp.
59
73
.
16.
Sinha
,
S. C.
,
Gourdon
,
E.
, and
Zhang
,
Y.
, 2005, “
Control of Time-Periodic Systems via Symbolic Computation With Application to Chaos Control
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
108
, pp.
835
854
.
17.
Yakubovich
,
V. A.
, and
Starzhinskii
,
V. M.
, 1975,
Linear Differential Equations With Periodic Coefficients, Part I and Part II
,
Wiley
,
New York
.
18.
Arnold
,
V. I.
, 1982,
Geometrical Methods in the Theory of Ordinary Differential Equations
,
Springer
,
Berlin
.
19.
Bruno
,
A. D.
, 1989,
Local Methods in Nonlinear Differential Equations
,
Springer
,
Berlin
.
20.
Siegel
,
C. L.
, and
Moser
,
L. K.
, 1971,
Lectures on Celestial Mechanics
,
Springer
,
Berlin
.
21.
Krantz
,
S. G.
, and
Parks
,
H. R.
, 1992,
A Primer of Real Analytic Functions
,
Birkhauser Verlag
,
Boston, MA
.
22.
Sternberg
,
S.
, 1958, “
On the Structure of Local Homeomorphisms of Euclidean n-Space II
,”
Am. J. Math.
0002-9327,
80
, pp.
623
631
.
23.
Belitskii
,
G.
, 2002, “
C∞-Normal Forms of Local Vector Fields
,”
Acta Appl. Math.
0167-8019,
70
, pp.
23
41
.
24.
Lecerf
,
G.
and
Schost
,
E.
, 2001, “
Fast Multivariate Power Series Multiplication in Characteristic Zero
,”
SADIO Electronic Journal on Informatics and Operations Research
,
5
, pp
1
10
.
25.
Van der Hoeven
,
J.
, 1997, “
Lazy Multiplication of Formal Power Series
,”
Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation
.
You do not currently have access to this content.