Abstract

According to traffic flow theory, traffic is affected not only by road conditions such as bottlenecks, the environment, interruptions, and so on but also by the driver's behavior. To control and manage increasingly complex traffic networks, it also becomes necessary to study the effects of driver characteristics significantly. In this research, a novel car-following model is proposed which considers both the driver's cautious and aggressive instincts for optimal and relative velocity integrals. To analyze the stability of the new model, a small perturbation method was used. Further, the modified Korteweg–de-Vries equations were established with the help of a reductive perturbation method. In bifurcation analysis, we examine the existence and stability of Hopf bifurcation in various systems. This helps to gain deeper insight into the behavior of these dynamical systems and can be used to develop more efficient control strategies. Numerical simulations and theoretical analyses both show that the aspects of the enhanced model related to driver characteristics have a major affect on traffic flow stability. Additionally, the model can adeptly handle traffic congestion and quickly return to its normal state if any disruption occurs.

References

1.
Herman
,
R.
,
Montroll
,
E. W.
,
Potts
,
R. B.
, and
Rothery
,
R. W.
,
1959
, “
Traffic Dynamics: Analysis of Stability in Car Following
,”
Oper. Res.
,
7
(
1
), pp.
86
106
.10.1287/opre.7.1.86
2.
Gazis
,
D. C.
,
Herman
,
R.
, and
Potts
,
R. B.
,
1959
, “
Car-Following Theory of Steady-State Traffic Flow
,”
Oper. Res.
,
7
(
4
), pp.
499
505
.10.1287/opre.7.4.499
3.
Gazis
,
D. C.
,
Herman
,
R.
, and
Rothery
,
R. W.
,
1961
, “
Nonlinear Follow-the-Leader Models of Traffic Flow
,”
Oper. Res.
,
9
(
4
), pp.
545
567
.10.1287/opre.9.4.545
4.
Gipps
,
P. G.
,
1981
, “
A Behavioural Car-Following Model for Computer Simulation
,”
Transp. Res. Part B: Methodol.
,
15
(
2
), pp.
105
111
.10.1016/0191-2615(81)90037-0
5.
Yang
,
D.
,
Jin
,
P.
,
Pu
,
Y.
, and
Ran
,
B.
,
2013
, “
Safe Distance Car-Following Model Including Backward-Looking and Its Stability Analysis
,”
Eur. Phys. J. B
,
86
(
3
), pp.
1
11
.10.1140/epjb/e2012-30688-6
6.
Nagel
,
K.
, and
Schreckenberg
,
M.
,
1992
, “
A Cellular Automaton Model for Freeway Traffic
,”
J. Phys. I
,
2
(
12
), pp.
2221
2229
.10.1051/jp1:1992277
7.
Jiang
,
Y.
,
Wang
,
S.
,
Yao
,
Z.
,
Zhao
,
B.
, and
Wang
,
Y.
,
2021
, “
A Cellular Automata Model for Mixed Traffic Flow Considering the Driving Behavior of Connected Automated Vehicle Platoons
,”
Phys. A
,
582
, p.
126262
.10.1016/j.physa.2021.126262
8.
Treiber
,
M.
,
Hennecke
,
A.
, and
Helbing
,
D.
,
1999
, “
Derivation, Properties, and Simulation of a Gas-Kinetic-Based, Nonlocal Traffic Model
,”
Phys. Rev. E
,
59
(
1
), pp.
239
253
.10.1103/PhysRevE.59.239
9.
Ngoduy
,
D.
,
2012
, “
Application of Gas-Kinetic Theory to Modelling Mixed Traffic of Manual and ACC Vehicles
,”
Transportmetrica
,
8
(
1
), pp.
43
60
.10.1080/18128600903578843
10.
Tang
,
T. Q.
,
Huang
,
H.
, and
Shang
,
H. Y.
,
2010
, “
A New Macro Model for Traffic Flow With the Consideration of the Driver's Forecast Effect
,”
Phys. Lett. A
,
374
(
15–16
), pp.
1668
1672
.10.1016/j.physleta.2010.02.001
11.
Cheng
,
R.
,
Ge
,
H.
, and
Wang
,
J.
,
2017
, “
An Improved Continuum Model for Traffic Flow Considering Driver's Memory During a Period of Time and Numerical Tests
,”
Phys. Lett. A
,
381
(
34
), pp.
2792
2800
.10.1016/j.physleta.2017.06.047
12.
Cheng
,
R.
,
Ge
,
H.
, and
Wang
,
J.
,
2017
, “
Kdv–Burgers Equation in a New Continuum Model Based on Full Velocity Difference Model Considering Anticipation Effect
,”
Phys. A
,
481
, pp.
52
59
.10.1016/j.physa.2017.04.004
13.
Gupta
,
A. K.
, and
Sharma
,
S.
,
2012
, “
Analysis of the Wave Properties of a New Two-Lane Continuum Model With the Coupling Effect
,”
Chin. Phys. B
,
21
(
1
), p.
015201
.10.1088/1674-1056/21/1/015201
14.
Nagatani
,
T.
,
1999
, “
Jamming Transition in a Two-Dimensional Traffic Flow Model
,”
Phys. Rev. E
,
59
(
5
), pp.
4857
4864
.10.1103/PhysRevE.59.4857
15.
Peng
,
G.
,
2013
, “
A New Lattice Model of the Traffic Flow With the Consideration of the Driver Anticipation Effect in a Two-Lane System
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
1035
1043
.10.1007/s11071-013-0850-7
16.
Gupta
,
A. K.
, and
Redhu
,
P.
,
2013
, “
Analyses of Driver's Anticipation Effect in Sensing Relative Flux in a New Lattice Model for Two-Lane Traffic System
,”
Phys. A
,
392
(
22
), pp.
5622
5632
.10.1016/j.physa.2013.07.040
17.
Redhu
,
P.
, and
Gupta
,
A. K.
,
2015
, “
Delayed-Feedback Control in a Lattice Hydrodynamic Model
,”
Commun. Nonlinear Sci. Numer. Simul.
,
27
(
1–3
), pp.
263
270
.10.1016/j.cnsns.2015.03.015
18.
Redhu
,
P.
, and
Gupta
,
A. K.
,
2016
, “
Effect of Forward Looking Sites on a Multi-Phase Lattice Hydrodynamic Model
,”
Phys. A
,
445
, pp.
150
160
.10.1016/j.physa.2015.10.051
19.
Madaan
,
N.
, and
Sharma
,
S.
,
2022
, “
Influence of Driver's Behavior With Empirical Lane Changing on the Traffic Dynamics
,”
Eur. Phys. J. B
,
95
(
1
), pp.
1
11
.10.1140/epjb/s10051-021-00270-0
20.
Pipes
,
L. A.
,
1953
, “
An Operational Analysis of Traffic Dynamics
,”
J. Appl. Phys.
,
24
(
3
), pp.
274
281
.10.1063/1.1721265
21.
Newell
,
G. F.
,
1961
, “
Nonlinear Effects in the Dynamics of Car Following
,”
Oper. Res.
,
9
(
2
), pp.
209
229
.10.1287/opre.9.2.209
22.
Bando
,
M.
,
Hasebe
,
K.
,
Nakayama
,
A.
,
Shibata
,
A.
, and
Sugiyama
,
Y.
,
1995
, “
Dynamical Model of Traffic Congestion and Numerical Simulation
,”
Phys. Rev. E
,
51
(
2
), pp.
1035
1042
.10.1103/PhysRevE.51.1035
23.
Tang
,
T.
,
Huang
,
H.
,
Wong
,
S.
, and
Jiang
,
R.
,
2008
, “
A Car-Following Model With the Anticipation Effect of Potential Lane Changing
,”
Acta Mech. Sin.
,
24
(
4
), pp.
399
407
.10.1007/s10409-008-0163-0
24.
Jiang
,
R.
,
Wu
,
Q.
, and
Zhu
,
Z.
,
2001
, “
Full Velocity Difference Model for a Car-Following Theory
,”
Phys. Rev. E
,
64
(
1
), p.
017101
.10.1103/PhysRevE.64.017101
25.
Yu
,
S.
,
Liu
,
Q.
, and
Li
,
X.
,
2013
, “
Full Velocity Difference and Acceleration Model for a Car-Following Theory
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
5
), pp.
1229
1234
.10.1016/j.cnsns.2012.09.014
26.
Zhou
,
T.
,
Sun
,
D.
,
Kang
,
Y.
,
Li
,
H.
, and
Tian
,
C.
,
2014
, “
A New Car-Following Model With Consideration of the Prevision Driving Behavior
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
10
), pp.
3820
3826
.10.1016/j.cnsns.2014.03.012
27.
Tang
,
T. Q.
,
Li
,
C. Y.
, and
Huang
,
H.
,
2010
, “
A New Car-Following Model With the Consideration of the Driver's Forecast Effect
,”
Phys. Lett. A
,
374
(
38
), pp.
3951
3956
.10.1016/j.physleta.2010.07.062
28.
Ou
,
H.
, and
Tang
,
T. Q.
,
2018
, “
An Extended Two-Lane Car-Following Model Accounting for Inter-Vehicle Communication
,”
Phys. A
,
495
, pp.
260
268
.10.1016/j.physa.2017.12.100
29.
Gupta
,
A. K.
, and
Redhu
,
P.
,
2014
, “
Analyses of the Driver's Anticipation Effect in a New Lattice Hydrodynamic Traffic Flow Model With Passing
,”
Nonlinear Dyn.
,
76
(
2
), pp.
1001
1011
.10.1007/s11071-013-1183-2
30.
Yadav
,
S.
, and
Redhu
,
P.
,
2023
, “
Driver's Attention Effect in Car-Following Model With Passing Under v2v Environment
,”
Nonlinear Dyn.
,
111
(
14
), pp.
13245
13261
.10.1007/s11071-023-08548-x
31.
Orosz
,
G.
, and
Stépán
,
G.
,
2004
, “
Hopf Bifurcation Calculations in Delayed Systems With Translational Symmetry
,”
J. Nonlinear Sci.
,
14
(
6
), pp.
505
528
.10.1007/s00332-004-0625-4
32.
Ren
,
W.
,
Cheng
,
R.
,
Ge
,
H.
, and
Wei
,
Q.
,
2020
, “
Bifurcation Control in an Optimal Velocity Model Via Double Time-Delay Feedback Method
,”
IEEE Access
,
8
, pp.
216162
216175
.10.1109/ACCESS.2020.3041794
33.
Zhai
,
C.
, and
Wu
,
W.
,
2018
, “
A New Car-Following Model Considering Driver's Characteristics and Traffic Jerk
,”
Nonlinear Dyn.
,
93
(
4
), pp.
2185
2199
.10.1007/s11071-018-4318-7
34.
Gasser
,
I.
,
Sirito
,
G.
, and
Werner
,
B.
,
2004
, “
Bifurcation Analysis of a Class of ‘Car Following’ Traffic Models
,”
Phys. D
,
197
(
3–4
), pp.
222
241
.10.1016/j.physd.2004.07.008
35.
Zhang
,
Y.
,
Xue
,
Y.
,
Zhang
,
P.
,
Fan
,
D.
, and
di He
,
H.
,
2019
, “
Bifurcation Analysis of Traffic Flow Through an Improved Car-Following Model Considering the Time-Delayed Velocity Difference
,”
Phys. A
,
514
, pp.
133
140
.10.1016/j.physa.2018.09.012
36.
Orosz
,
G.
,
Krauskopf
,
B.
, and
Wilson
,
R. E.
,
2005
, “
Bifurcations and Multiple Traffic Jams in a Car-Following Model With Reaction-Time Delay
,”
Phys. D
,
211
(
3–4
), pp.
277
293
.10.1016/j.physd.2005.09.004
37.
Pan
,
Y.
,
Wang
,
Y.
,
Miao
,
B.
, and
Cheng
,
R.
,
2022
, “
Stabilization Strategy of a Novel Car-Following Model With Time Delay and Memory Effect of the Driver
,”
Sustainability
,
14
(
12
), p.
7281
.10.3390/su14127281
38.
Ma
,
G.
,
Ma
,
M.
,
Liang
,
S.
,
Wang
,
Y.
, and
Zhang
,
Y.
,
2020
, “
An Improved Car-Following Model Accounting for the Time-Delayed Velocity Difference and Backward Looking Effect
,”
Commun. Nonlinear Sci. Numer. Simul.
,
85
, p.
105221
.10.1016/j.cnsns.2020.105221
39.
Peng
,
G.
,
He
,
H.
, and
Lu
,
W. Z.
,
2016
, “
A New Car-Following Model With the Consideration of Incorporating Timid and Aggressive Driving Behaviors
,”
Phys. A
,
442
, pp.
197
202
.10.1016/j.physa.2015.09.009
40.
Cheng
,
R.
,
Ge
,
H.
, and
Wang
,
J.
,
2017
, “
An Extended Continuum Model Accounting for the Driver's Timid and Aggressive Attributions
,”
Phys. Lett. A
,
381
(
15
), pp.
1302
1312
.10.1016/j.physleta.2017.02.018
41.
Sharma
,
S.
,
2015
, “
Lattice Hydrodynamic Modeling of Two-Lane Traffic Flow With Timid and Aggressive Driving Behavior
,”
Phys. A
,
421
, pp.
401
411
.10.1016/j.physa.2014.11.003
42.
Peng
,
G.
, and
Qing
,
L.
,
2016
, “
A New Macro Model of Traffic Flow by Incorporating Both Timid and Aggressive Driving Behaviors
,”
Mod. Phys. Lett. B
,
30
(
29
), p.
1650351
.10.1142/S0217984916503516
43.
Wang
,
Z.
,
Ge
,
H.
, and
Cheng
,
R.
,
2020
, “
An Extended Macro Model Accounting for the Driver's Timid and Aggressive Attributions and Bounded Rationality
,”
Phys. A
,
540
, p.
122988
.10.1016/j.physa.2019.122988
44.
Zhai
,
C.
,
Wu
,
W.
, and
Luo
,
S.
,
2021
, “
Heterogeneous Traffic Flow Modeling With Drivers' Timid and Aggressive Characteristics
,”
Chin. Phys. B
,
30
(
10
), p.
100507
.10.1088/1674-1056/abf7ae
45.
Chang
,
Y.
,
He
,
Z.
, and
Cheng
,
R.
,
2019
, “
An Extended Lattice Hydrodynamic Model Considering the Driver's Sensory Memory and Delayed-Feedback Control
,”
Phys. A
,
514
, pp.
522
532
.10.1016/j.physa.2018.09.097
46.
Ge
,
H.
,
Cheng
,
R.
, and
Dai
,
S.
,
2005
, “
Kdv and Kink–Antikink Solitons in Car-Following Models
,”
Phys. A
,
357
(
3–4
), pp.
466
476
.10.1016/j.physa.2005.03.059
You do not currently have access to this content.