Abstract

This paper proposes a fast and stable iterative algorithm for wheel–rail contact geometry based on constraint equations, which can be implemented in dynamic wear simulations that real-time profile updating is needed. Further, critical factors that determine convergence and iteration stability are analyzed. A B-spline is adopted for wheel–rail profile modeling because it does not contribute to changes in the global shape of curves. It is found that the smoothness of the first and second derivative curves significantly affects the numerical stability of the Jacobian matrix, which determines the increments in iterations. Moreover, a damped Newton's iteration formula with a scaling factor of 0.5 is proposed considering the convergence rate and out-of-bound issues for the updated step. The influence of the initial iteration parameters on the convergence is studied using Newton fractals. The range within ±3 mm, centered on the target contact point, is found to be an unconditionally stable domain. The proposed method could achieve convergence within 10 and 30 steps under thread and flange contact conditions, respectively.

References

1.
Schupp
,
G.
,
Weidemann
,
C.
, and
Mauer
,
L.
,
2004
, “
Modelling the Contact Between Wheel and Rail Within Multibody System Simulation
,”
Veh. Syst. Dyn.
,
41
(
5
), pp.
349
364
.10.1080/00423110412331300326
2.
Polach
,
O.
, and
Nicklisch
,
D.
,
2016
, “
Wheel/Rail Contact Geometry Parameters in Regard to Vehicle Behaviour and Their Alteration With Wear
,”
Wear
,
366–367
, pp.
200
208
.10.1016/j.wear.2016.03.029
3.
Vollebregt
,
E.
,
2021
, “
Detailed Wheel/Rail Geometry Processing With the Conformal Contact Approach
,”
Multibody Sys. Dyn.
,
52
(
2
), pp.
135
167
.10.1007/s11044-020-09762-w
4.
Evans
,
J.
, and
Mats
,
B.
,
2009
, “
Challenges in Simulation of Rail Vehicle Dynamics
,”
Veh. Syst. Dyn.
,
47
(
8
), pp.
1023
1048
.10.1080/00423110903071674
5.
Falomi
,
S.
,
Malvezzi
,
M.
, and
Meli
,
E.
,
2011
, “
Multibody Modeling of Railway Vehicles: Innovative Algorithms for the Detection of Wheel–Rail Contact Points
,”
Wear
,
271
(
1–2
), pp.
453
461
.10.1016/j.wear.2010.10.039
6.
Magheri
,
S.
,
Malvezzi
,
M.
,
Meli
,
E.
, and
Rindi
,
A.
,
2011
, “
An Innovative Wheel–Rail Contact Model for Multibody Applications
,”
Wear
,
271
(
1–2
), pp.
462
471
.10.1016/j.wear.2010.10.038
7.
Meli
,
E.
,
Magheri
,
S.
, and
Malvezzi
,
M.
,
2011
, “
Development and Implementation of a Differential Elastic Wheel–Rail Contact Model for Multibody Applications
,”
Veh. Syst. Dyn.
,
49
(
6
), pp.
969
1001
.10.1080/00423114.2010.504854
8.
Marques
,
F.
,
Magalhães
,
H.
,
Pombo
,
J.
,
Ambrósio
,
J.
, and
Flores
,
P.
,
2020
, “
A Three-Dimensional Approach for Contact Detection Between Realistic Wheel and Rail Surfaces for Improved Railway Dynamic Analysis
,”
Mech. Mach. Theory
,
149
, p.
103825
.10.1016/j.mechmachtheory.2020.103825
9.
Malvezzi
,
M.
,
Meli
,
E.
,
Falomi
,
S.
, and
Rindi
,
A.
,
2008
, “
Determination of Wheel–Rail Contact Points With Semianalytic Methods
,”
Multi-Body Dyn.
,
20
(
4
), pp.
327
358
.10.1007/s11044-008-9123-5
10.
Shabana
,
A. A.
,
Zaazaa
,
K. E.
,
Escalona
,
J. L.
, and
Sany
,
J. R.
,
2004
, “
Development of Elastic Force Model for Wheel/Rail Contact Problems
,”
J. Sound Vib.
,
269
(
1–2
), pp.
295
325
.10.1016/S0022-460X(03)00074-9
11.
Sugiyama
,
H.
,
Tanii
,
Y.
,
Suda
,
Y.
,
Nishina
,
M.
,
Komine
,
H.
,
Miyamoto
,
T.
,
Doi
,
H.
, and
Chen
,
H.
,
2011
, “
Wheel/Rail Contact Geometry on Tight Radius Curved Track: Simulation and Experimental Validation
,”
Multibody Syst. Dyn.
,
25
(
2
), pp.
117
130
.10.1007/s11044-010-9215-x
12.
Shabana
,
A. A.
,
Tobaa
,
M.
,
Sugiyama
,
H.
, and
Zaazaa
,
K. E.
,
2005
, “
On the Computer Formulations of the Wheel/Rail Contact Problem
,”
Nonlinear Dyn.
,
40
(
2
), pp.
169
193
.10.1007/s11071-005-5200-y
13.
Pombo
,
J.
,
Ambrosio
,
J.
, and
Silva
,
M.
,
2007
, “
A New Wheel–Rail Contact Model for Railway Dynamics
,”
Veh. Syst. Dyn.
,
45
(
2
), pp.
165
189
.10.1080/00423110600996017
14.
Antunes
,
P.
,
Magalhães
,
H.
,
Ambrósio
,
J.
,
Pombo
,
J.
, and
Costa
,
J.
,
2019
, “
A Co-Simulation Approach to the Wheel–Rail Contact With Flexible Railway Track
,”
Multibody Syst. Dyn.
,
45
(
2
), pp.
245
272
.10.1007/s11044-018-09646-0
15.
Escalona
,
J. L.
, and
Aceituno
,
J. F.
,
2019
, “
Multibody Simulation of Railway Vehicles With Contact Lookup Tables
,”
Int. J. Mech. Sci.
,
155
, pp.
571
582
.10.1016/j.ijmecsci.2018.01.020
16.
Piotrowski
,
J.
, and
Chollet
,
H.
,
2005
, “
Wheel–Rail Contact Models for Vehicle System Dynamics Including Multi-Point Contact
,”
Veh. Syst. Dyn.
,
43
(
6–7
), pp.
455
483
.10.1080/00423110500141144
17.
Negretti
,
D.
,
2012
, “
A Third-Order Approximation Method for Three-Dimensional Wheel–Rail Contact
,”
Veh. Syst. Dyn.
,
50
(
3
), pp.
431
448
.10.1080/00423114.2011.595804
18.
Shu
,
X.
,
Wilson
,
N.
,
Sasaoka
,
C.
, and
Elkins
,
J.
,
2006
, “
Development of a Real-Time Wheel/Rail Contact Model in Nucars and Application to Diamond Crossing and Turnout Design Simulations
,”
Veh. Syst. Dyn.
,
44
(
sup1
), pp.
251
260
.10.1080/00423110600870378
19.
Arnold
,
M.
, and
Netter
,
H.
,
1998
, “
The Approximation of Contact Geometry in the Dynamical Simulation of Wheel-Rail Systems
,”
Math. Comput. Model. Dyn. Syst.
,
4
(
2
), pp.
162
184
.10.1080/13873959808837075
20.
Ferreira
,
O. P.
, and
Silva
,
R. C. M.
,
2012
, “
Local Convergence of Newton's Method Under a Majorant Condition in Riemannian Manifolds
,”
IMA J. Numer. Anal.
,
32
(
4
), pp.
1696
1713
.10.1093/imanum/drr048
21.
Catmull
,
E.
, and
Clark
,
J.
,
1978
, “
Recursively Generated B-Spline Surfaces on Arbitrary Topological Meshes
,”
Comput. Aided Des.
,
10
(
6
), pp.
350
355
.10.1016/0010-4485(78)90110-0
22.
Gordon
,
W. J.
, and
Riesenfeld
,
R. F.
,
1974
, “
B-Spline Curves and Surfaces
,”
Comput. Aided Geom. Des.
, pp.
95
126
.10.1016/B978-0-12-079050-0.50011-4
23.
Young
,
I. T.
, and
Vliet
,
L.
,
1995
, “
Recursive Implementation of the Gaussian Filter
,”
Signal Process
,
44
(
2
), pp.
139
151
.10.1016/0165-1684(95)00020-E
24.
Bortoloti
,
M. A. D. A.
,
Fernandes
,
T. A.
,
Ferreira
,
O. P.
, and
Yuan
,
J. Y.
,
2020
, “
Damped Newton's Method on Riemannian Manifolds
,”
J. Glob. Optim.
,
77
(
3
), pp.
643
660
.10.1007/s10898-020-00885-0
25.
EN 15302 Railway Applications,
2008
,
Method for Determining the Equivalent Conicity
,
Cen
,
Brussels
.
You do not currently have access to this content.