Abstract

This paper proposed an extended state observer (ESO)-based discrete-time sliding-mode controller (DSMCer) to improve the steady-state output tracking accuracy of the systems with unmeasurable states and unknown mismatched disturbances. First, an ESO is designed based on disturbance decomposition, which decomposes the lumped disturbances into the matched part and the mismatched part. Instead of regarding all the elements of the lumped disturbance as new states, the proposed ESO regards the first several elements, i.e., the nonzero elements, of the mismatched part of the disturbances as new states. This will result in a smaller dimension and make it easier to guarantee the existence of the ESO. Then, based on the states of the proposed ESO, a new sliding surface is constructed, a new reaching law is designed, and subsequently, a desirable DSMCer is organized, which can solve the problems of unmeasurable states and unknown disturbances and can effectively attenuate the effect of the mismatched part of the disturbances on the output tracking performance. The system stability is analyzed, and the effectiveness of the proposed method is verified through numerical simulations.

References

1.
Zhou
,
F.
, and
Fisher
,
D. G.
,
1992
, “
Continuous Sliding Mode Control
,”
Int. J. Control
,
55
(
2
), pp.
313
327
.10.1080/00207179208934240
2.
Feng
,
Y.
,
Han
,
F.
, and
Yu
,
X.
,
2014
, “
Chattering Free Full-Order Sliding-Mode Control
,”
Automatica
,
50
(
4
), pp.
1310
1314
.10.1016/j.automatica.2014.01.004
3.
Young
,
K. D.
,
Utkin
,
V. I.
, and
Ozguner
,
U.
,
1999
, “
A Control Engineer's Guide to Sliding Mode Control
,”
IEEE Trans. Control Syst. Technol.
,
7
(
3
), pp.
328
342
.10.1109/87.761053
4.
Zhang
,
J.
,
Liu
,
X.
,
Xia
,
Y.
,
Zuo
,
Z.
, and
Wang
,
Y.
,
2016
, “
Disturbance Observer-Based Integral Sliding-Mode Control for Systems With Mismatched Disturbances
,”
IEEE Trans. Ind. Electron.
,
63
(
11
), pp.
7040
7048
.10.1109/TIE.2016.2583999
5.
Utkin
,
V.
,
Poznyak
,
A.
,
Orlov
,
Y.
, and
Polyakov
,
A.
,
2020
, “
Conventional and High Order Sliding Mode Control
,”
J. Franklin Inst.
,
357
(
15
), pp.
10244
10261
.10.1016/j.jfranklin.2020.06.018
6.
Zhang
,
J.
,
Shi
,
P.
,
Xia
,
Y.
, and
Yang
,
H.
,
2019
, “
Discrete-Time Sliding Mode Control With Disturbance Rejection
,”
IEEE Trans. Ind. Electron.
,
66
(
10
), pp.
7967
7975
.10.1109/TIE.2018.2879309
7.
Sharma
,
N. K.
, and
Janardhanan
,
S.
,
2019
, “
Discrete-Time Higher-Order Sliding Mode Control of Systems With Unmatched Uncertainty
,”
Int. J. Robust Nonlinear
,
29
(
1
), pp.
135
152
.10.1002/rnc.4377
8.
Bartoszewicz
,
A.
, and
Latosiński
,
P.
,
2016
, “
Discrete Time Sliding Mode Control With Reduced Switching–a New Reaching Law Approach
,”
Int. J. Robust Nonlinear
,
26
(
1
), pp.
47
68
.10.1002/rnc.3291
9.
Ma
,
H.
,
Wu
,
J.
, and
Xiong
,
Z.
,
2016
, “
Discrete-Time Sliding-Mode Control With Improved Quasi-Sliding-Mode Domain
,”
IEEE Trans. Ind. Electron.
,
63
(
10
), pp.
6292
6304
.10.1109/TIE.2016.2580531
10.
Zhang
,
J.
,
Zhang
,
N.
,
Shen
,
G.
, and
Xia
,
Y.
,
2019
, “
Analysis and Design of Chattering-Free Discrete-Time Sliding Mode Control
,”
Int. J. Robust Nonlinear
,
29
(
18
), pp.
6572
6581
.10.1002/rnc.4748
11.
Yu
,
X.
,
Wang
,
B.
, and
Li
,
X.
,
2012
, “
Computer-Controlled Variable Structure Systems: The State-of-the-Art
,”
IEEE Trans. Ind. Inf.
,
8
(
2
), pp.
197
205
.10.1109/TII.2011.2178249
12.
Acary
,
V.
,
Brogliato
,
B.
, and
Orlov
,
Y. V.
,
2012
, “
Chattering-Free Digital Sliding-Mode Control With State Observer and Disturbance Rejection
,”
IEEE Trans. Autom. Control
,
57
(
5
), pp.
1087
1101
.10.1109/TAC.2011.2174676
13.
Hou
,
H.
, and
Zhang
,
Q.
,
2018
, “
Novel Sliding Mode Control for Multi-Input–Multi-Output Discrete-Time System With Disturbance
,”
Int. J. Robust Nonlinear
,
28
(
8
), pp.
3033
3055
.10.1002/rnc.4064
14.
Abidi
,
K.
,
Xu
,
J.-X.
, and
Xinghuo
,
Y.
,
2007
, “
On the Discrete-Time Integral Sliding-Mode Control
,”
IEEE Trans. Autom. Control
,
52
(
4
), pp.
709
715
.10.1109/TAC.2007.894537
15.
Chakrabarty
,
S.
, and
Bandyopadhyay
,
B.
,
2016
, “
A Generalized Reaching Law With Different Convergence Rates
,”
Automatica
,
63
, pp.
34
37
.10.1016/j.automatica.2015.10.018
16.
Ma
,
H.
,
Li
,
Y.
, and
Xiong
,
Z.
,
2019
, “
Discrete-Time Sliding-Mode Control With Enhanced Power Reaching Law
,”
IEEE Trans. Ind. Electron.
,
66
(
6
), pp.
4629
4638
.10.1109/TIE.2018.2864712
17.
Sha
,
D.
, and
Bajic
,
V. B.
,
2000
, “
Robust Discrete Adaptive Input-Output-Based Sliding Mode Controller
,”
Int. J. Syst. Sci.
,
31
(
12
), pp.
1601
1614
.10.1080/00207720050217377
18.
Sha
,
D.
,
Bajic
,
V. B.
, and
Yang
,
H.
,
2002
, “
New Model and Sliding Mode Control of Hydraulic Elevator Velocity Tracking System
,”
Simul. Pract. Theory
,
9
(
6–8
), pp.
365
385
.10.1016/S1569-190X(02)00058-8
19.
Xu
,
Q.
,
2013
, “
Digital Sliding-Mode Control of Piezoelectric Micropositioning System Based on Input–Output Model
,”
IEEE Trans. Ind. Electron.
,
61
(
10
), pp.
5517
5526
.10.1109/TIE.2013.2290758
20.
Luenberger
,
D.
,
1971
, “
An Introduction to Observers
,”
IEEE Trans. Autom. Control
,
16
(
6
), pp.
596
602
.10.1109/TAC.1971.1099826
21.
Afri
,
C.
,
Andrieu
,
V.
,
Bako
,
L.
, and
Dufour
,
P.
,
2017
, “
State and Parameter Estimation: A Nonlinear Luenberger Observer Approach
,”
IEEE Trans. Autom. Control
,
62
(
2
), pp.
973
980
.10.1109/TAC.2016.2566804
22.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
Trans. ASME Ser. D J. Basic Eng.
,
82
(
1
), pp.
35
45
.10.1115/1.3662552
23.
Kalman
,
R. E.
, and
Bucy
,
R. S.
,
1961
, “
New Results in Linear Filtering and Prediction Theory
,”
Trans. ASME Ser D J Basic Eng
,
83
(
1
), pp.
95
108
.10.1115/1.3658902
24.
Auger
,
F.
,
Hilairet
,
M.
,
Guerrero
,
J. M.
,
Monmasson
,
E.
,
Orlowska-Kowalska
,
T.
, and
Katsura
,
S.
,
2013
, “
Industrial Applications of the Kalman Filter: A Review
,”
IEEE Trans. Ind. Electron.
,
60
(
12
), pp.
5458
5471
.10.1109/TIE.2012.2236994
25.
Zhao
,
D.
,
Ding
,
S. X.
,
Karimi
,
H. R.
,
Li
,
Y.
, and
Wang
,
Y.
,
2019
, “
On Robust Kalman Filter for Two-Dimensional Uncertain Linear Discrete Time-Varying Systems: A Least Squares Method
,”
Automatica
,
99
, pp.
203
212
.10.1016/j.automatica.2018.10.029
26.
Boizot
,
N.
,
Busvelle
,
E.
, and
Gauthier
,
J.-P.
,
2010
, “
An Adaptive High-Gain Observer for Nonlinear Systems
,”
Automatica
,
46
(
9
), pp.
1483
1488
.10.1016/j.automatica.2010.06.004
27.
Atassi
,
A. Nand.
, and
Khalil
,
H. K.
,
1999
, “
A Separation Principle for the Stabilization of a Class of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
44
(
9
), pp.
1672
1687
.10.1109/9.788534
28.
Luenberger
,
D.
,
1966
, “
Observers for Multivariable Systems
,”
IEEE Trans. Autom. Control
,
11
(
2
), pp.
190
197
.10.1109/TAC.1966.1098323
29.
Mohajerpoor
,
R.
,
Shanmugam
,
L.
,
Abdi
,
H.
,
Nahavandi
,
S.
, and
Park
,
J. H.
,
2018
, “
Delay-Dependent Functional Observer Design for Linear Systems With Unknown Time-Varying State Delays
,”
IEEE Trans. Cybern.
,
48
(
7
), pp.
2036
2048
.10.1109/TCYB.2017.2726106
30.
Spurgeon
,
S. K.
,
2008
, “
Sliding Mode Observers: A Survey
,”
Int. J. Syst. Sci.
,
39
(
8
), pp.
751
764
.10.1080/00207720701847638
31.
Thein
,
M.-W. L.
, and
Misawa
,
E. A.
,
2000
, “
A Discrete Time Sliding Mode Observer With an Attractive Boundary Layer
,”
Advances in Variable Structure Systems: Analysis, Integration and Applications. Advances in Variable Structure Systems
,
World Scientific
,
Singapore
, pp.
74
83.
32.
Kim
,
D.
,
Koo
,
K.
,
Jeong
,
J. J.
,
Goh
,
T.
, and
Kim
,
S. W.
,
2013
, “
Second-Order Discrete-Time Sliding Mode Observer for State of Charge Determination Based on a Dynamic Resistance Li-Ion Battery Model
,”
Energies
,
6
(
10
), pp.
5538
5551
.10.3390/en6105538
33.
Orlov
,
Y.
,
Chakrabarty
,
S.
,
Zhao
,
D.
, and
Spurgeon
,
S. K.
,
2019
, “
Sliding Mode Observer Design for a Parabolic PDE in the Presence of Unknown Inputs
,”
Asian J. Control
,
21
(
1
), pp.
224
235
.10.1002/asjc.1849
34.
Szabat
,
K.
,
Tran-Van
,
T.
, and
Kaminski
,
M.
,
2015
, “
A Modified Fuzzy Luenberger Observer for a Two-Mass Drive System
,”
IEEE Trans. Ind. Inform.
,
11
(
2
), pp.
531
539
.10.1109/TII.2014.2327912
35.
Andersson
,
A.
, and
Thiringer
,
T.
,
2018
, “
Motion Sensorless Ipmsm Control Using Linear Moving Horizon Estimation With Luenberger Observer State Feedback
,”
IEEE Trans. Ind. Electron.
,
4
(
2
), pp.
464
473
.10.1109/TTE.2018.2790709
36.
Accetta
,
A.
,
Cirrincione
,
M.
,
Pucci
,
M.
, and
Vitale
,
G.
,
2014
, “
Neural Sensorless Control of Linear Induction Motors by a Full-Order Luenberger Observer Considering the End Effects
,”
IEEE Trans. Ind. Appl.
,
50
(
3
), pp.
1891
1904
.10.1109/TIA.2013.2288429
37.
Ginoya
,
D.
,
Shendge
,
P.
, and
Phadke
,
S.
,
2014
, “
Sliding Mode Control for Mismatched Uncertain Systems Using an Extended Disturbance Observer
,”
IEEE Trans. Ind. Electron.
,
61
(
4
), pp.
1983
1992
.10.1109/TIE.2013.2271597
38.
Xu
,
J.-X.
, and
Abidi
,
K.
,
2008
, “
Discrete-Time Output Integral Sliding-Mode Control for a Piezomotor-Driven Linear Motion Stage
,”
IEEE Trans. Ind. Electron.
,
55
(
11
), pp.
3917
3926
.10.1109/TIE.2008.2003194
39.
Wang
,
J.
,
Li
,
S.
,
Yang
,
J.
,
Wu
,
B.
, and
Li
,
Q.
,
2015
, “
Extended State Observer-Based Sliding Mode Control for PWM-Based DC–DC Buck Power Converter Systems With Mismatched Disturbances
,”
IET Control Theory Appl.
,
9
(
4
), pp.
579
586
.10.1049/iet-cta.2014.0220
40.
Shi
,
S.-L.
,
Li
,
J.-X.
, and
Fang
,
Y.-M.
,
2018
, “
Extended-State-Observer-Based Chattering Free Sliding Mode Control for Nonlinear Systems With Mismatched Disturbance
,”
IEEE Access
,
6
, pp.
22952
22957
.10.1109/ACCESS.2018.2828868
41.
Zou
,
Q.
,
2020
, “
Observer Based Sliding Mode Control for Hydraulic Driven Barrel Servo System With Unknown Dynamics
,”
IEEE Access
,
8
, pp.
131370
131379
.10.1109/ACCESS.2020.3009089
42.
Li
,
Y.
,
Yang
,
B.
,
Zheng
,
T.
,
Li
,
Y.
,
Cui
,
M.
, and
Peeta
,
S.
,
2015
, “
Extended-State-Observer-Based Double-Loop Integral Sliding-Mode Control of Electronic Throttle Valve
,”
IEEE Trans. Intell. Transp.
,
16
(
5
), pp.
2501
2510
.10.1109/TITS.2015.2410282
43.
Ren
,
C.
,
Li
,
X.
,
Yang
,
X.
, and
Ma
,
S.
,
2019
, “
Extended State Observer-Based Sliding Mode Control of an Omnidirectional Mobile Robot With Friction Compensation
,”
IEEE Trans. Ind. Electron.
,
66
(
12
), pp.
9480
9489
.10.1109/TIE.2019.2892678
44.
Cui
,
R.
,
Chen
,
L.
,
Yang
,
C.
, and
Chen
,
M.
,
2017
, “
Extended State Observer-Based Integral Sliding Mode Control for an Underwater Robot With Unknown Disturbances and Uncertain Nonlinearities
,”
IEEE Trans. Ind. Electron.
,
64
(
8
), pp.
6785
6795
.10.1109/TIE.2017.2694410
45.
Brisilla
,
R.
, and
Sankaranarayanan
,
V.
,
2017
, “
Extended State Observer-Based Sliding Mode Control for Multi-Input Multi-Output System With Multiple Disturbances
,”
J. Control Autom.
,
28
(
1
), pp.
11
25
.10.1007/s40313-016-0289-4
46.
Li
,
S.
,
Yang
,
J.
,
Chen
,
W.-H.
, and
Chen
,
X.
,
2012
, “
Generalized Extended State Observer Based Control for Systems With Mismatched Uncertainties
,”
IEEE Trans. Ind. Electron.
,
59
(
12
), pp.
4792
4802
.10.1109/TIE.2011.2182011
47.
Gao
,
W.
,
Wang
,
Y.
, and
Homaifa
,
A.
,
1995
, “
Discrete-Time Variable Structure Control Systems
,”
IEEE Trans. Ind. Electron.
,
42
(
2
), pp.
117
122
.10.1109/41.370376
48.
Xu
,
Q.
, and
Li
,
Y.
,
2012
, “
Micro-/Nanopositioning Using Model Predictive Output Integral Discrete Sliding Mode Control
,”
IEEE Trans. Ind. Electron.
,
59
(
2
), pp.
1161
1170
.10.1109/TIE.2011.2157287
49.
Misawa
,
E.
,
1997
, “
Discrete-Time Sliding Mode Control: The Linear Case
,”
ASME J. Dyn. Syst. Trans.
,
119
(
4
), pp.
819
821
.10.1115/1.2802396
50.
Yu
,
X.
,
1997
, “
Bifurcation and Chaotic Behaviors in a Discrete Variable Structure System With Unbounded Control Magnitude
,”
Int. J. Bifurcation Chaos
,
07
(
08
), pp.
1897
1905
.10.1142/S0218127497001473
51.
Yu
,
X.
,
1994
, “
Digital Variable Structure Control With Pseudo-Sliding Modes
,”
Variable Structure and Lyapunov Control
,
Springer
, Berlin, pp.
133
159
.
52.
Yu
,
X.
,
1998
, “
Discretization Effect on a Sliding Mode Control System With Bang–Bang Type Switching
,”
Int. J. Bifurcation Chaos
,
08
(
06
), pp.
1245
1257
.10.1142/S0218127498000978
53.
Yu
,
X.
, and
Chen
,
G.
,
2003
, “
Discretization Behaviors of Equivalent Control Based Variable Structure Systems
,”
IEEE Trans. Autom. Control
,
48
(
9
), pp.
1641
1646
.10.1109/TAC.2003.816970
54.
Yu
,
X.
,
Wang
,
B.
,
Galias
,
Z.
, and
Chen
,
G.
,
2008
, “
Discretization Effect on Equivalent Control-Based Multi-Input Sliding-Mode Control Systems
,”
IEEE Trans. Autom. Control
,
53
(
6
), pp.
1563
1569
.10.1109/TAC.2008.928311
55.
Galias
,
Z.
, and
Yu
,
X.
,
2008
, “
Analysis of Zero-Order Holder Discretization of Two-Dimensional Sliding-Mode Control Systems
,”
IEEE Trans. Circuits Syst. II Express Briefs
,
55
(
12
), pp.
1269
1273
.10.1109/TCSII.2008.2008069
56.
Wang
,
B.
,
2008
, “
On Discretization of Sliding Mode Control Systems
,”
Ph.D. dissertation
,
RMIT University
,
Melbourne, VIC, Australia
.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.952.8212&rep=rep1&type=pdf
57.
Wang
,
B.
,
Yu
,
X.
, and
Li
,
X.
,
2008
, “
ZOH Discretization Effect on Higher-Order Sliding-Mode Control Systems
,”
IEEE Trans. Ind. Electron.
,
55
(
11
), pp.
4055
4064
.10.1109/TIE.2008.2005139
58.
Wang
,
B.
,
Yu
,
X.
, and
Chen
,
G.
,
2009
, “
ZOH Discretization Effect on Single-Input Sliding Mode Control Systems With Matched Uncertainties
,”
Automatica
,
45
(
1
), pp.
118
125
.10.1016/j.automatica.2008.05.028
59.
Mihoub
,
M.
,
Nouri
,
A. S.
, and
Abdennour
,
R. B.
,
2011
, “
A Second Order Discrete Sliding Mode Observer for the Variable Structure Control of a Semi-Batch Reactor
,”
Control Eng. Pract.
,
19
(
10
), pp.
1216
1222
.10.1016/j.conengprac.2011.06.012
60.
Guan
,
X.
,
Hu
,
J.
,
Qi
,
J.
,
Chen
,
D.
,
Zhang
,
F.
, and
Yang
,
G.
,
2021
, “
Observer-Based H Sliding Mode Control for Networked Systems Subject to Communication Channel Fading and Randomly Varying Nonlinearities
,”
Neurocomputing
,
437
, pp.
312
324
.10.1016/j.neucom.2021.01.023
61.
Abidi
,
K.
,
Xu
,
J.-X.
, and
She
,
J.-H.
,
2008
, “
A Discrete-Time Terminal Sliding-Mode Control Approach Applied to a Motion Control Problem
,”
IEEE Trans. Ind. Electron.
,
56
(
9
), pp.
3619
3627
.10.1109/TIE.2008.2010203
62.
Zhang
,
S.
,
Bi
,
Q.
,
Ji
,
Y.
, and
Wang
,
Y.
,
2019
, “
Real-Time Thickness Compensation in Mirror Milling Based on Modified Smith Predictor and Disturbance Observer
,”
Int. J. Mach. Tools Manuf.
,
144
, p.
103427
.10.1016/j.ijmachtools.2019.103427
63.
Lan
,
J.
,
2020
, “
Asymptotic Estimation of State and Faults for Linear Systems With Unknown Perturbations
,”
Automatica
,
118
, p.
108955
.10.1016/j.automatica.2020.108955
64.
Zhu
,
B.
, and
Xia
,
X.
,
2016
, “
Adaptive Model Predictive Control for Unconstrained Discrete-Time Linear Systems With Parametric Uncertainties
,”
IEEE Trans. Autom. Control
,
61
(
10
), pp.
3171
3176
.10.1109/TAC.2015.2505783
You do not currently have access to this content.