Abstract

Neuromuscular electrical stimulation (NMES) is a promising technique to actuate the human musculoskeletal system in the presence of neurological impairments. The closed-loop control of NMES systems is nontrivial due to their inherent uncertain nonlinearity. In this paper, we propose a Nussbaum-type neural network (NN)-based controller for the lower leg limb NMES systems. The control accounts for model uncertainties and external disturbances in the system and, for the first time, provides a solution with rigorous stability analysis to the adaptive NMES tracking problem with input saturation and muscle fatigue. The proposed controller guarantees a uniformly ultimately bounded (UUB) tracking for the knee-joint angular position. To evaluate the control performance, a simulation study is taken, where the performance comparison with a NN controller inspired by Ge et al. (2004, “Adaptive Neural Control of Nonlinear Time-Delay Systems With Unknown Virtual Control Coefficients,” IEEE Trans. Syst., Man, Cybern.-Part B, 34(1), pp. 499–516) is given. The simulation results show a good tracking performance of the proposed controller regardless of the time-varying muscle fatigue and moderate input saturation. The adaptation mechanism of the Nussbaum-type gain and the controller's robustness to the muscle fatigue and input saturation are discussed in details along with the simulations.

References

1.
Sharma
,
N.
,
Gregory
,
C.
, and
Dixon
,
W.
,
2011
, “
Predictor-Based Compensation for Electromechanical Delay During Neuromuscular Electrical Stimulation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
19
(
6
), pp.
601
611
.10.1109/TNSRE.2011.2166405
2.
Alibeji
,
N.
,
Kirsch
,
N.
,
Farrokhi
,
S.
, and
Sharma
,
N.
,
2015
, “
Further Results on Predictor-Based Control of Neuromuscular Electrical Stimulation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
6
), pp.
1095
1105
.10.1109/TNSRE.2015.2418735
3.
Ferrarin
,
M.
, and
Pedotti
,
A.
,
2000
, “
The Relationship Between Electrical Stimulus and Joint Torque: A Dynamic Model
,”
IEEE Trans. Rehabil. Eng.
,
8
(
3
), pp.
342
352
.10.1109/86.867876
4.
Hausdorff
,
J.
, and
Durfee
,
W.
,
1991
, “
Open-Loop Position Control of the Knee Joint Using Electrical Stimulation of the Quadriceps and Hamstrings
,”
Med. Biol. Eng. Comput.
,
29
(
3
), pp.
269
280
.10.1007/BF02446709
5.
Abbas
,
J. J.
, and
Chizeck
,
H. J.
,
1991
, “
Feedback Control of Coronal Plane Hip Angle in Paraplegic Subjects Using Functional Neuromuscular Stimulation
,”
IEEE Trans. Biomed. Eng.
,
38
(
7
), pp.
687
698
.10.1109/10.83570
6.
Lan
,
N.
,
Crago
,
P.
, and
Chizeck
,
H.
,
1991
, “
Control of End-Point Forces of a Multijoint Limb by Functional Neuromuscular Stimulation
,”
IEEE Trans. Biomed. Eng.
,
38
(
10
), pp.
953
965
.10.1109/10.88441
7.
Schauer
,
T.
,
Negard
,
N.
,
Previdi
,
F.
,
Hunt
,
K.
,
Fraser
,
M.
,
Ferchland
,
E.
, and
Raisch
,
J.
,
2005
, “
Online Identification and Nonlinear Control of the Electrically Stimulated Quadriceps Muscle
,”
Control Eng. Pract.
,
13
(
9
), pp.
1207
1219
.10.1016/j.conengprac.2004.10.006
8.
Sharma
,
N.
,
Stegath
,
K.
,
Gregory
,
C.
, and
Dixon
,
W.
,
2009
, “
Nonlinear Neuromuscular Electrical Stimulation Tracking Control of a Human Limb
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
17
(
6
), pp.
576
584
.10.1109/TNSRE.2009.2023294
9.
Alibeji
,
N.
,
Kirsch
,
N.
, and
Sharma
,
N.
,
2017
, “
An Adaptive Low-Dimensional Control to Compensate for Actuator Redundancy and FES-Induced Muscle Fatigue in a Hybrid Neuroprosthesis
,”
Control Eng. Pract.
,
59
, pp.
204
219
.10.1016/j.conengprac.2016.07.015
10.
Alibeji
,
N.
,
Molazadeh
,
V.
,
Dicianno
,
B.
, and
Sharma
,
N.
,
2018
, “
A Control Scheme That Uses Dynamic Postural Synergies to Coordinate a Hybrid Walking Neuroprosthesis: Theory and Experiments
,”
Front. Neurosci.
,
12
, p. 159.10.3389/fnins.2018.00159
11.
Yang
,
R.
, and
de Queiroz
,
M.
,
2018
, “
Robust Adaptive Control of the Nonlinearly Parameterized Human Shank Dynamics for Electrical Stimulation Applications
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
8
), p.
081019
.10.1115/1.4039366
12.
Jezernik
,
S.
,
Wassink
,
R. G. V.
, and
Keller
,
T.
,
2004
, “
Sliding Mode Closed Loop Control of FES: Controlling the Shank Movement
,”
IEEE Trans. Biomed. Eng.
,
51
(
2
), pp.
263
272
.10.1109/TBME.2003.820393
13.
Bellman
,
M.
,
Downey
,
R.
,
Parikh
,
A.
, and
Dixon
,
W.
,
2017
, “
Automatic Control of Cycling Induced by Functional Electrical Stimulation With Electric Motor Assistance
,”
IEEE Trans. Autom. Sci. Eng.
,
14
(
2
), pp.
1225
1262
.10.1109/TASE.2016.2527716
14.
Downey
,
R.
,
Cheng
,
T.
,
Bellman
,
M.
, and
Dixon
,
W.
,
2017
, “
Switched Tracking Control of the Lower Limb During Asynchronous Neuromuscular Electrical Stimulation: Theory and Experiments
,”
IEEE Trans. Cybern.
,
47
(
5
), pp.
1251
1262
.10.1109/TCYB.2016.2543699
15.
Alibeji
,
N.
,
Kirsch
,
N.
,
Dicianno
,
E.
, and
Sharma
,
N.
,
2017
, “
A Modified Dynamic Surface Controller for Delayed Neuromuscular Electrical Stimulation
,”
IEEE/ASME Trans. Mechatron.
,
22
(
4
), pp.
1755
1764
.10.1109/TMECH.2017.2704915
16.
Riess
,
J.
, and
Abbas
,
J.
,
2000
, “
Adaptive Neural Network Control of Cyclic Movements Using Functional Neuromuscular Stimulation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
8
(
1
), pp.
42
52
.10.1109/86.830948
17.
Sharma
,
N.
,
Kirsch
,
N. A.
,
Alibeji
,
N. A.
, and
Dixon
,
W. E.
,
2017
, “
A Non-Linear Control Method to Compensate for Muscle Fatigue During Neuromuscular Electrical Stimulation
,”
Front. Robot. AI
,
4
, p.
68
.10.3389/frobt.2017.00068
18.
Yang
,
R.
,
de Queiroz
,
M.
, and
Li
,
M.
,
2018
, “
Neural Network-Based Control of Neuromuscular Electrical Stimulation With Input Saturation
,”
IFAC PapersOnLine
,
51
(
34
), pp.
170
175
.10.1016/j.ifacol.2019.01.061
19.
Rouse
,
C.
,
Downey
,
R.
,
Gregory
,
C.
,
Cousin
,
C.
,
Duenas
,
V.
, and
Dixon
,
W.
,
2020
, “
FES Cycling in Stroke: Novel Closed-Loop Algorithm Accommodates Differences in Functional Impairments
,”
IEEE Trans. Biomed. Eng.
,
67
(
3
), pp.
738
749
.10.1109/TBME.2019.2920346
20.
Bao
,
X.
,
Kirsch
,
N.
,
Dodson
,
A.
, and
Sharma
,
N.
,
2019
, “
Model Predictive Control of a Feedback-Linearized Hybrid Neuroprosthetic System With a Barrier Penalty
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
10
), p.
101009
.10.1115/1.4042903
21.
Bao
,
X.
,
Mao
,
Z.-H.
,
Munro
,
P.
,
Sun
,
Z.
, and
Sharma
,
N.
,
2019
, “
Sub-Optimally Solving Actuator Redundancy in a Hybrid Neuroprosthetic System With a Multi-Layer Neural Network Structure
,”
Int. J. Intell. Rob. Appl.
,
3
(
3
), pp.
298
313
.10.1007/s41315-019-00100-8
22.
Karafyllis
,
I.
,
Malisoff
,
M.
,
de Queiroz
,
M.
,
Krstic
,
M.
, and
Yang
,
R.
,
2015
, “
Predictor-Based Tracking for Neuromuscular Electrical Stimulation
,”
Int. J. Rob. Nonlinear Control
,
25
(
14
), pp.
2391
2419
.10.1002/rnc.3211
23.
Riener
,
R.
,
Quintern
,
J.
, and
Schmidt
,
G.
,
1996
, “
Biomechanical Model of the Human Knee Evaluated by Neuromuscular Stimulation
,”
J. Biomech.
,
29
(
9
), pp.
1157
1167
.10.1016/0021-9290(96)00012-7
24.
Yang
,
R.
,
2017
, “
Nonlinear Model-Based Control for Neuromuscular Electrical Stimulation
,” Ph.D. thesis, Louisiana State University, LSU Doctoral Dissertations, Baton Rouge, LA.
25.
Annaswamy
,
A.
, and
Wong
,
J.
,
1997
, “
Adaptive Control in the Presence of Saturation Non-Linearity
,”
Int. J. Adapt. Control Signal Process.
,
11
(
1
), pp.
3
19
.10.1002/(SICI)1099-1115(199702)11:1<3::AID-ACS391>3.0.CO;2-T
26.
Nussbaum
,
R.
,
1983
, “
Some Remarks on the Conjecture in Parameter Adaptive Control
,”
Syst. Control Lett.
,
3
(
5
), pp.
243
246
.10.1016/0167-6911(83)90021-X
27.
Wen
,
C.
,
Zhou
,
J.
,
Liu
,
Z.
, and
Su
,
H.
,
2011
, “
Robust Adaptive Control of Uncertain Nonlinear Systems in the Presence of Input Saturation and External Disturbance
,”
IEEE Trans. Autom. Control
,
56
(
7
), pp.
1672
1678
.10.1109/TAC.2011.2122730
28.
Zhou
,
Q.
,
Shi
,
P.
,
Tian
,
Y.
, and
Wang
,
M.
,
2015
, “
Approximation-Based Adaptive Tracking Control for MIMO Nonlinear Systems With Input Saturation
,”
IEEE Trans. Cybern.
,
45
(
10
), pp.
2119
2128
.10.1109/TCYB.2014.2365778
29.
Gao
,
Y.
,
Sun
,
X.
,
Wen
,
C.
, and
Wang
,
W.
,
2017
, “
Observer-Based Adaptive NN Control for a Class of Uncertain Nonlinear Systems With Nonsymmetric Input Saturation
,”
IEEE Trans. Neural Networks Learn. Syst.
,
28
(
7
), pp.
1520
1530
.10.1109/TNNLS.2016.2529843
30.
Zhou
,
Q.
,
Wang
,
L.
,
Wu
,
C.
,
Li
,
H.
, and
Du
,
H.
,
2017
, “
Adaptive Fuzzy Control for Nonstrict-Feecback Systems With Input Saturation and Output Constraint
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
47
(
1
), pp.
1
11
.10.1109/TSMC.2016.2557222
31.
Sharma
,
N.
,
Patre
,
P.
,
Gregory
,
C.
, and
Dixon
,
W.
,
2009
, “
Nonlinear Control of NMES: Incorporating Fatigue and Calcium Dynamics
,”
ASME
Paper No. DSCC2009-2642.10.1115/DSCC2009-2642
32.
Zhang
,
Q.
,
Iyer
,
A.
,
Sun
,
Z.
,
Dodson
,
A.
, and
Sharma
,
N.
,
2020
, “
Sampled-Data Observer Based Dynamic Surface Control of Delayed Neuromuscular Functional Electrical Stimulation
,”
ASME
Paper No. DSCC2020-3225.10.1115/DSCC2020-3225
33.
Cybenko
,
G.
,
1989
, “
Approximations by Superpositions of Sigmoidal Functions
,”
Math. Control Signals Syst.
,
2
(
4
), pp.
303
314
.10.1007/BF02551274
34.
Ge
,
S. S.
,
Hong
,
F.
, and
Lee
,
T. H.
,
2004
, “
Adaptive Neural Control of Nonlinear Time-Delay Systems With Unknown Virtual Control Coefficients
,”
IEEE Trans. Syst., Man, Cybern.-Part B
,
34
(
1
), pp.
499
516
.10.1109/TSMCB.2003.817055
35.
Riener
,
R.
, and
Fuhr
,
T.
,
1998
, “
Patient-Driven Control of FES-Supported Standing Up: A Simulation Study
,”
IEEE Trans. Rehabil. Eng.
,
6
(
2
), pp.
113
124
.10.1109/86.681177
36.
Ryan
,
E.
,
1991
, “
A Universal Adaptive Stabilizer for a Class of Nonlinear Systems
,”
Syst. Control Lett.
,
16
(
3
), pp.
209
218
.10.1016/0167-6911(91)90050-O
37.
Sharma
,
N.
,
Gregory
,
C.
,
Johnson
,
M.
, and
Dixon
,
W.
,
2012
, “
Closed-Loop Neural Network-Based NMES Control for Human Limb Tracking
,”
IEEE Trans. Control Syst. Technol.
,
20
(
3
), pp.
712
725
.10.1109/TCST.2011.2125792
You do not currently have access to this content.