Abstract

This paper presents an adaptive uncertainty estimator-based proportional-integral (PI) type sliding mode control for a spherical robot with structural uncertainties and external disturbance. By projection method, the 3D robot dynamic model with structural asymmetry is decoupled into the balance subsystem and velocity subsystem, and the kinetics equations are established based on Newton–Euler's law. To estimate the unknown structural dynamics in the balance subsystem and external disturbance in the velocity subsystem, adaptive law containing both control and estimation error information is proposed for the uncertainty estimator (UE) design. Then, an uncertainty estimator-based PI type uncertainty estimator sliding mode controller (UESMC) is introduced for balance and velocity control, leading to enhanced disturbance rejection capability and a reduced steady-state error. Simulations and experiments on a real spherical robot are conducted to demonstrate the efficacy of the proposed control strategies.

References

1.
Lei
,
M.
, and
Li
,
Y.
,
2020
, “
Model-Based Control and Stability Analysis of Underactuated Autonomous Underwater Vehicles Via Singular Perturbations
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(6), p. 061006.10.1115/1.4046880
2.
Mobayen
,
S.
,
2016
, “
A Novel Global Sliding Mode Control Based on Exponential Reaching Law for a Class of Underactuated Systems With External Disturbances
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
2
), p.
021011
.10.1115/1.4031087
3.
Zhou
,
B.
,
Zi
,
B.
,
Li
,
Y.
, and
Zhu
,
W.
,
2020
, “
Hybrid Compound Function/Subinterval Perturbation Method for Kinematic Analysis of a Dual-Crane System With Large Bounded Uncertainty
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(1), p.
014501
.10.1115/1.4048363
4.
Tafrishi
,
S. A.
,
Svinin
,
M. M.
,
Esmaeilzadeh
,
E.
, and
Yamamoto
,
M.
,
2019
, “
Design, Modeling, and Motion Analysis of a Novel Fluid Actuated Spherical Rolling Robot
,”
ASME J. Mech. Rob.
, 11(4), p. 041010.10.1115/1.4043689
5.
Hu
,
Y.
,
Wei
,
Y.
, and
Liu
,
M.
,
2021
, “
Design and Performance Evaluation of a Spherical Robot Assisted by High-Speed Rotating Flywheels for Self-Stabilization and Obstacle Surmounting
,”
ASME J. Mech. Rob.
, 13(6), p. 061001.10.1115/1.4050623
6.
Akella
,
P.
,
O'Reilly
,
O. M.
, and
Sreenath
,
K.
,
2019
, “
Controlling the Locomotion of Spherical Robots or Why BB-8 Works
,”
ASME J. Mech. Rob.
, 11(2), p.
024501
.10.1115/1.4042296
7.
Herrera-Cordero
,
M. E.
,
Arias-Montiel
,
M.
,
Ceccarelli
,
M.
, and
Lugo-González
,
E.
,
2021
, “
Co-Simulation and Control of a Single-Wheel Pendulum Mobile Robot
,”
ASME J. Mech. Rob.
, 13(5), pp.
1
15
.10.1115/1.4051359
8.
Han
,
S.
, and
Lee
,
J.
,
2015
, “
Balancing and Velocity Control of a Unicycle Robot Based on the Dynamic Model
,”
IEEE Trans. Ind. Electron.
,
62
(
1
), pp.
405
413
.10.1109/TIE.2014.2327562
9.
Madhushani
,
T.
,
Maithripala
,
D. H. S.
,
Wijayakulasooriya
,
J.
, and
Berg
,
J.
,
2017
, “
Semi-Globally Exponential Trajectory Tracking for a Class of Spherical Robots
,”
Automatica
,
85
, pp.
327
338
.10.1016/j.automatica.2017.07.060
10.
Bai
,
Y.
,
Svinin
,
M.
, and
Yamamoto
,
M.
,
2016
, “
Backstepping Trajectory Tracking Control for a Spherical Rolling Robot
,”
IROS
, Daejeon, South Korea, Oct. 9–14, pp.
298
303
.10.1109/IROS.2016.7759070
11.
Bai
,
Y.
,
Svinin
,
M.
, and
Yamamoto
,
M.
,
2015
, “
Motion Planning for a Pendulum-Driven Rolling Robot Tracing Spherical Contact Curves
,”
IROS
, Hamburg, Germany, Sept. 28–Oct. 2, pp.
4053
4058
.10.1109/IROS.2015.7353949
12.
Sabet
,
S.
,
Poursina
,
M.
,
Nikravesh
,
P.
,
Reverdy
,
P.
, and
akbar Agha-mohammadi
,
A.
,
2020
, “
Dynamic Modeling, Energy Analysis, and Path Planning of Spherical Robots on Uneven Terrains
,”
IEEE Robot. Autom. Lett.
,
5
(
4
), pp.
6049
6056
.10.1109/LRA.2020.3010489
13.
Do
,
V.
,
Lee
,
S.
, and
Kim
,
J.
,
2020
, “
Robust Integral Backstepping Hierarchical Sliding Mode Controller for a Ballbot System
,”
Mech. Syst. Signal. Process.
,
144
, p.
106866
.10.1016/j.ymssp.2020.106866
14.
Han
,
J.
,
2009
, “
From PID to Active Disturbance Rejection Control
,”
IEEE Trans. Ind. Electron.
,
56
(
3
), pp.
900
906
.10.1109/TIE.2008.2011621
15.
Zhao
,
Z.
, and
Guo
,
B.
,
2017
, “
A Nonlinear Extended State Observer Based on Fractional Power Functions
,”
Automatica
,
81
, pp.
286
296
.10.1016/j.automatica.2017.03.002
16.
Yuan
,
Y.
,
Yu
,
Y.
,
Wang
,
Z.
, and
Guo
,
L.
,
2019
, “
A Sampled-Data Approach to Nonlinear ESO-Based Active Disturbance Rejection Control for Pneumatic Muscle Actuator Systems With Actuator Saturations
,”
IEEE Trans. Ind. Electron.
,
66
(
6
), pp.
4608
4617
.10.1109/TIE.2018.2864711
17.
Pu
,
Z.
,
Yuan
,
R.
,
Yi
,
J.
, and
Tan
,
X. M.
,
2015
, “
A Class of Adaptive Extended State Observers for Nonlinear Disturbed Systems
,”
IEEE Trans. Ind. Electron.
,
62
(
9
), pp.
5858
5869
.10.1109/TIE.2015.2448060
18.
Palli
,
G.
,
Strano
,
S.
, and
Terzo
,
M.
,
2018
, “
Sliding-Mode Observers for State and Disturbance Estimation in Electro-Hydraulic Systems
,”
Control Eng. Pract.
,
74
, pp.
58
70
.10.1016/j.conengprac.2018.02.007
19.
Gan
,
M.
,
Zhang
,
M.
,
Zheng
,
C.
, and
Chen
,
J.
,
2018
, “
An Adaptive Sliding Mode Observer Over Wide Speed Range for Sensorless Control of a Brushless DC Motor
,”
Control Eng. Pract.
,
77
, pp.
52
62
.10.1016/j.conengprac.2018.05.004
20.
Du
,
J.
,
Liu
,
Z.
,
Wang
,
Y.
, and
Wen
,
C.
,
2016
, “
An Adaptive Sliding Mode Observer for Lithium-Ion Battery State of Charge and State of Health Estimation in Electric Vehicles
,”
Control Eng. Pract.
,
54
, pp.
81
90
.10.1016/j.conengprac.2016.05.014
21.
Rahme
,
S.
, and
Meskin
,
N.
,
2015
, “
Adaptive Sliding Mode Observer for Sensor Fault Diagnosis of an Industrial Gas Turbine
,”
Control Eng. Pract.
,
38
, pp.
57
74
.10.1016/j.conengprac.2015.01.006
22.
Liu
,
Y.
,
Li
,
S.
,
Tong
,
S.
, and
Chen
,
C.
,
2019
, “
Adaptive Reinforcement Learning Control Based on Neural Approximation for Nonlinear Discrete-Time Systems With Unknown Nonaffine Dead-Zone Input
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
30
(
1
), pp.
295
305
.10.1109/TNNLS.2018.2844165
23.
Chen
,
B.
,
Zhang
,
H.
, and
Lin
,
C.
,
2016
, “
Observer-Based Adaptive Neural Network Control for Nonlinear Systems in Nonstrict-Feedback Form
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
27
(
1
), pp.
89
98
.10.1109/TNNLS.2015.2412121
24.
Zhang
,
Y.
,
Tao
,
G.
, and
Chen
,
M.
,
2016
, “
Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
27
(
9
), pp.
1864
1877
.10.1109/TNNLS.2015.2461001
25.
Wang
,
N.
,
Sun
,
J.
,
Han
,
M.
,
Zheng
,
Z.
, and
Er
,
M.
,
2018
, “
Adaptive Approximation-Based Regulation Control for a Class of Uncertain Nonlinear Systems Without Feedback Linearizability
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
29
(
8
), pp.
3747
3760
.10.1109/TNNLS.2017.2738918
26.
Yue
,
M.
, and
Liu
,
B.
,
2014
, “
Adaptive Control of an Underactuated Spherical Robot With a Dynamic Stable Equilibrium Point Using Hierarchical Sliding Mode Approach
,”
Int. J. Adapt. Control.
,
28
(
6
), pp.
523
535
.10.1002/acs.2413
27.
Shi
,
D.
,
Zhang
,
J.
,
Sun
,
Z.
,
Shen
,
G.
, and
Xia
,
Y.
,
2021
, “
Composite Trajectory Tracking Control for Robot Manipulator With Active Disturbance Rejection
,”
Control. Eng. Pract.
,
106
, p.
104670
.10.1016/j.conengprac.2020.104670
28.
Cai
,
Y.
,
Zhan
,
Q.
, and
Yan
,
C.
,
2012
, “
Two-State Trajectory Tracking Control of a Spherical Robot Using Neurodynamics
,”
Robotics
,
30
(
2
), pp.
195
203
.10.1017/S0263574711000518
29.
Michaud
,
F.
, and
Caron
,
S.
,
2002
, “
Roball, the Rolling Robot
,”
Auton. Rob.
,
12
(
2
), pp.
211
222
.10.1023/A:1014005728519
30.
Asiri
,
S.
,
Khademianzadeh
,
F.
,
Monadjemi
,
A.
, and
Moallem
,
P.
,
2019
, “
The Design and Development of a Dynamic Model of a Low-Power Consumption, Two-Pendulum Spherical Robot
,”
IEEE-ASME Trans. Mechatronics
,
24
(
5
), pp.
2406
2415
.10.1109/TMECH.2019.2934180
31.
Kolbari
,
H.
,
Ahmadi
,
A.
,
Bahrami
,
M.
, and
Janati
,
F.
,
2018
, “
Impedance Estimation and Motion Control of a Pendulum-Driven Spherical Robot
,”
ICROM
, Singapore, Oct. 23–25, pp.
6
11
.10.1109/ICRoM.2018.8657621
You do not currently have access to this content.