Abstract

The piezoelectric and electromagnetic hybrid vibration energy harvester (HVEH) has proven to be a favorable option to deal with the low power generation issue and overcome the drawbacks of each individual transduction mechanism. Besides, colored Lévy noise consisting of small perturbations, large jumps, and correlation time turns out to be a relatively suitable tool for describing the complex environments. For the purpose of enhancing the harvesting performance of HVEH, the stochastic dynamics induced by colored Lévy noise in a tri-stable HVEH is mainly investigated in this paper. The stationary probability density, the largest Lyapunov exponent, the signal-to-noise ratio, and the mean harvested power are calculated to explore the stochastic dynamics of system, such as the stochastic response, the stochastic stability, the stochastic resonance (SR), and the energy harvesting performance. The results show that the colored Lévy noise can induce stochastic P-bifurcation, D-bifurcation, and SR phenomenon. In particular, the comparisons between colored Lévy noise and colored Brownian noise in dynamics and harvesting performance are also discussed in detail. It is found that the colored Lévy noise can make a greater contribution than colored Brownian noise in the effective voltage and help to improve the mean harvested power through the SR effect.

References

1.
Foong
,
F. M.
,
Thein
,
C. K.
,
Ooi
,
B. L.
, and
Yurchenko
,
D.
,
2019
, “
Increased Power Output of an Electromagnetic Vibration Energy Harvester Through Anti-Phase Resonance
,”
Mech. Syst. Signal Process
,
116
, pp.
129
145
.10.1016/j.ymssp.2018.06.012
2.
Kumar
,
A.
,
Ali
,
S. F.
, and
Arockiarajan
,
A.
,
2019
, “
Influence of Piezoelectric Energy Transfer on the Interwell Oscillations of Multistable Vibration Energy Harvesters
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
3
), p.
031001
.10.1115/1.4042139
3.
Raj
,
P. V. R.
, and
Santhosh
,
B.
,
2019
, “
Parametric Study and Optimization of Linear and Nonlinear Vibration Absorbers Combined With Piezoelectric Energy Harvester
,”
Int. J. Mech. Sci.
,
152
, pp.
268
279
.10.1016/j.ijmecsci.2018.12.053
4.
Mitcheson
,
P. D.
,
Miao
,
P.
,
Stark
,
B. H.
,
Yeatman
,
E. M.
,
Holmes
,
A. S.
, and
Green
,
T. C.
,
2004
, “
MEMS Electrostatic Micropower Generator for Low Frequency Operation
,”
Sensors Actuators A
,
115
(
2–3
), pp.
523
529
.10.1016/j.sna.2004.04.026
5.
Lensvelt
,
R.
,
Fey
,
R. H. B.
,
Mestrom
,
R. M. C.
, and
Nijmeijer
,
H.
,
2020
, “
Design and Numerical Analysis of an Electrostatic Energy Harvester With Impact for Frequency Up-Conversion
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
5
), p.
051005
.10.1115/1.4046664
6.
Panyam
,
M.
, and
Daqaq
,
M. F.
,
2017
, “
Characterizing the Effective Bandwidth of Tri-Stable Energy Harvesters
,”
J. Sound Vib.
,
386
, pp.
336
358
.10.1016/j.jsv.2016.09.022
7.
Zhang
,
Y. X.
,
Jin
,
Y. F.
, and
Xu
,
P. F.
,
2019
, “
Stochastic Resonance and Bifurcations in a Harmonically Driven Tri-Stable Potential With Colored Noise
,”
Chaos
,
29
(
2
), p.
023127
.10.1063/1.5053479
8.
Zhang
,
Y. X.
,
Jin
,
Y. F.
,
Xu
,
P. F.
, and
Xiao
,
S. M.
,
2020
, “
Stochastic Bifurcations in a Nonlinear Tri-Stable Energy Harvester Under Colored Noise
,”
Nonlinear Dyn.
,
99
(
2
), pp.
879
897
.10.1007/s11071-018-4702-3
9.
Zhou
,
S. X.
, and
Zuo
,
L.
,
2018
, “
Nonlinear Dynamic Analysis of Asymmetric Tristable Energy Harvesters for Enhanced Energy Harvesting
,”
Commun. Nonlinear Sci. Numer. Simulat.
,
61
, pp.
271
284
.10.1016/j.cnsns.2018.02.017
10.
Zhang
,
Y. X.
,
Jin
,
Y. F.
, and
Xu
,
P. F.
,
2020
, “
Dynamics of a Coupled Nonlinear Energy Harvester Under Colored Noise and Periodic Excitations
,”
Int. J. Mech. Sci.
,
172
, p.
105418
.10.1016/j.ijmecsci.2020.105418
11.
Hamid
,
R.
, and
Yuce
,
M. R.
,
2017
, “
A Wearable Energy Harvester Unit Using Piezoelectric-Electromagnetic Hybrid Technique
,”
Sensors Actuators A Phys.
,
257
, pp.
198
207
.10.1016/j.sna.2017.02.026
12.
Challa
,
V. R.
,
Prasad
,
M. G.
, and
Fisher
,
F. T.
,
2009
, “
A Coupled Piezoelectric–Electromagnetic Energy Harvesting Technique for Achieving Increased Power Output Through Damping Matching
,”
Smart Mater. Struct.
,
18
(
9
), p.
095029
.10.1088/0964-1726/18/9/095029
13.
Yang
,
B.
,
Lee
,
C.
,
Kee
,
W. L.
, and
Lim
,
S. P.
,
2010
, “
Hybrid Energy Harvester Based on Piezoelectric and Electromagnetic Mechanisms
,”
J. Micro/Nanolithogr., MEMS, MOEMS
,
9
(
2
), p.
023002
.10.1117/1.3373516
14.
Sang
,
Y.
,
Huang
,
X.
,
Liu
,
H.
, and
Jin
,
P.
,
2012
, “
A Vibration-Based Hybrid Energy Harvester for Wireless Sensor Systems
,”
IEEE Trans. Magn.
,
48
(
11
), pp.
4495
4498
.10.1109/TMAG.2012.2201452
15.
Li
,
P.
,
Gao
,
S.
, and
Cai
,
H.
,
2015
, “
Modeling and Analysis of Hybrid Piezoelectric and Electromagnetic Energy Harvesting From Random Vibrations
,”
Microsyst. Technol.
,
21
(
2
), pp.
401
414
.10.1007/s00542-013-2030-6
16.
Li
,
P.
,
Gao
,
S.
, and
Cong
,
B.
,
2018
, “
Theoretical Modeling, Simulation and Experimental Study of Hybrid Piezoelectric and Electromagnetic Energy Harvester
,”
AIP Adv.
,
8
(
3
), p.
035017
.10.1063/1.5018836
17.
Rajarathinam
,
M.
, and
Ali
,
S. F.
,
2018
, “
Energy Generation in a Hybrid Harvester Under Harmonic Excitation
,”
Energy Convers. Manage.
,
155
, pp.
10
19
.10.1016/j.enconman.2017.10.054
18.
Xia
,
H.
,
Chen
,
R.
, and
Ren
,
L.
,
2017
, “
Parameter Tuning of Piezoelectric–Electromagnetic Hybrid Vibration Energy Harvester by Magnetic Force
,”
Sensor. Actuators A Phys.
,
257
, pp.
73
83
.10.1016/j.sna.2017.01.026
19.
Foupouapouognigni
,
O.
,
Buckjohn
,
C. N. D.
,
Siewe
,
M. S.
, and
Tchawoua
,
C.
,
2018
, “
Hybrid Electromagnetic and Piezoelectric Vibration Energy Harvester With Gaussian White Noise Excitation
,”
Phys. A
,
509
, pp.
346
360
.10.1016/j.physa.2018.06.026
20.
Yang
,
T.
, and
Cao
,
Q.
,
2019
, “
Dynamics and Energy Generation of a Hybrid Energy Harvester Under Colored Noise Excitations
,”
Mech. Syst. Signal Process.
,
121
, pp.
745
766
.10.1016/j.ymssp.2018.12.004
21.
Ramakrishnan
,
S.
, and
Edlund
,
C.
,
2020
, “
Stochastic Stability of a Piezoelectric Vibration Energy Harvester Under a Parametric Excitation and Noise-Induced Stabilization
,”
Mech. Syst. Signal Process.
,
140
, p.
106566
.10.1016/j.ymssp.2019.106566
22.
Baronchelli
,
A.
, and
Radicchi
,
F.
,
2013
, “
Lévy Flights in Human Behavior and Cognition
,”
Chaos Solit. Fract.
,
56
, pp.
101
105
.10.1016/j.chaos.2013.07.013
23.
Schertzer
,
D.
,
Larchevêque
,
M.
,
Duan
,
J.
,
Yanovsky
,
V. V.
, and
Lovejoy
,
S.
,
2001
, “
Fractional Fokker–Planck Equation for Nonlinear Stochastic Differential Equations Driven by non-Gaussian Lévy Stable Noises
,”
J. Math. Phys.
,
42
(
1
), pp.
200
212
.10.1063/1.1318734
24.
Duan
,
J.
,
2015
,
An Introduction to Stochastic Dynamics
,
Cambridge University Press
,
New York
.
25.
Feng
,
J.
,
Xu
,
W.
,
Xu
,
Y.
, and
Wang
,
X.
,
2019
, “
Effects of Lévy Noise in a Neuronal Competition Model
,”
Phys. A
,
531
, p.
121747
.10.1016/j.physa.2019.121747
26.
Zheng
,
Y.
,
Yang
,
F.
,
Duan
,
J.
,
Sun
,
X.
,
Fu
,
L.
, and
Kurths
,
J.
,
2020
, “
The Maximum Likelihood Climate Change for Global Warming Under the Influence of Greenhouse Effect and Lévy Noise
,”
Chaos
,
30
(
1
), p.
013132
.10.1063/1.5129003
27.
Akdim
,
K.
,
Ez-Zetouni
,
A.
,
Danane
,
J.
, and
Allali
,
K.
,
2020
, “
Stochastic Viral Infection Model With Lytic and Nonlytic Immune Responses Driven by Lévy Noise
,”
Phys. A
,
549
, p.
124367
.10.1016/j.physa.2020.124367
28.
,
Y.
, and
Bao
,
J. D.
,
2016
, “
Directed Transport Induced by Colored Lévy Noise: Competition Between Long Jumps and Noise Correlation
,”
Phys. Lett. A
,
380
(
33
), pp.
2485
2488
.10.1016/j.physleta.2016.05.056
29.
Xu
,
Y.
,
Wu
,
J.
,
Du
,
L.
, and
Yang
,
H.
,
2016
, “
Stochastic Resonance in a Genetic Toggle Model With Harmonic Excitation and Lévy Noise
,”
Chaos Solit. Fract.
,
92
, pp.
91
100
.10.1016/j.chaos.2016.09.015
30.
Zhang
,
Y. X.
, and
Jin
,
Y. F.
,
2019
, “
Stochastic Dynamics of a Piezoelectric Energy Harvester With Correlated Colored Noises From Rotational Environment
,”
Nonlinear Dyn.
,
98
(
1
), pp.
501
515
.10.1007/s11071-019-05208-x
31.
Jin
,
Y.
,
Xiao
,
S.
, and
Zhang
,
Y.
,
2018
, “
Enhancement of Tristable Energy Harvesting Using Stochastic Resonance
,”
J. Stat. Mech.
,
2018
(
12
), p.
123211
.10.1088/1742-5468/aae5a3
32.
Liu
,
H.
,
Zhong
,
J.
,
Lee
,
C.
,
Lee
,
S. W.
, and
Lin
,
L.
,
2018
, “
A Comprehensive Review on Piezoelectric Energy Harvesting Technology: Materials, Mechanisms, and Applications
,”
Appl. Phys. Rev.
,
5
(
4
), p.
041306
.10.1063/1.5074184
33.
Zhou
,
S. X.
,
Cao
,
J. Y.
,
Lin
,
J.
, and
Wang
,
Z. Z.
,
2014
, “
Exploitation of a Tristable Nonlinear Oscillator for Improving Broadband Vibration Energy Harvesting
,”
Eur. Phys. J. Appl. Phys.
,
67
(
3
), p.
30902
.10.1051/epjap/2014140190
34.
Cao
,
J. Y.
,
Zhou
,
S. X.
,
Inman
,
D. J.
, and
Chen
,
Y. Q.
,
2015
, “
Chaos in the Fractionally Damped Broadband Piezoelectric Energy Generator
,”
Nonlinear Dyn.
,
80
(
4
), pp.
1705
1719
.10.1007/s11071-014-1320-6
35.
Lallart
,
M.
,
Zhou
,
S. X.
,
Yan
,
L. J.
,
Yang
,
Z. C.
, and
Chen
,
Y.
,
2019
, “
Tailoring Multistable Vibrational Energy Harvesters for Enhanced Performance: Theory and Numerical Investigation
,”
Nonlinear Dyn.
,
96
(
2
), pp.
1283
1301
.10.1007/s11071-019-04853-6
36.
Xu
,
Y.
,
Wang
,
X. Y.
,
Zhang
,
H. Q.
, and
Xu
,
W.
,
2012
, “
Stochastic Stability for Nonlinear Systems Driven by Lévy Noise
,”
Nonlinear Dyn.
,
68
(
1–2
), pp.
7
15
.10.1007/s11071-011-0199-8
37.
Bucher
,
C.
,
Di Matteo
,
A.
,
Di Paola
,
M.
, and
Pirrotta
,
A.
,
2016
, “
First-Passage Problem for Nonlinear Systems Under Lévy White Noise Through Path Integral Method
,”
Nonlinear Dyn.
,
85
(
3
), pp.
1445
1456
.10.1007/s11071-016-2770-9
38.
Paola
,
M. D.
, and
Failla
,
G.
,
2005
, “
Stochastic Response of Linear and Non-Linear Systems to α-Stable Lévy White Noises
,”
Probabil. Eng. Mech.
,
20
(
2
), pp.
128
135
.10.1016/j.probengmech.2004.12.001
39.
Pirrotta
,
A.
,
2005
, “
Non-Linear Systems Under Parametric White Noise Input: Digital Simulation and Response
,”
Int. J. Nonlinear Mech.
,
40
(
8
), pp.
1088
1101
.10.1016/j.ijnonlinmec.2005.04.001
40.
Wang
,
Z. Q.
,
Xu
,
Y.
, and
Yang
,
H.
,
2016
, “
Lévy Noise Induced Stochastic Resonance in an FHN Model
,”
Sci. China Technol. Sci.
,
59
(
3
), pp.
371
375
.10.1007/s11431-015-6001-2
41.
Oseledets
,
V. I.
,
1968
, “
A Multiplicative Ergodic Theorem, Lyapunov Characteristic Numbers for Dynamical Systems
,”
Trans. Moscow Math. Soc.
,
19
, pp.
197
231
.10.4249/scholarpedia.1846
42.
Mann
,
B. P.
, and
Sims
,
N. D.
,
2010
, “
On the Performance and Resonant Frequency of Electromagnetic Induction Energy Harvesters
,”
J. Sound Vib.
,
329
(
9
), pp.
1348
1361
.10.1016/j.jsv.2009.11.008
43.
Stephen
,
N. G.
,
2006
, “
On Energy Harvesting From Ambient Vibration
,”
J. Sound Vib.
,
293
(
1–2
), pp.
409
425
.10.1016/j.jsv.2005.10.003
44.
Daqaq
,
M. F.
,
2011
, “
Transduction of a Bistable Inductive Generator Driven by White and Exponentially Correlated Gaussian Noise
,”
J. Sound Vib.
,
330
(
11
), pp.
2554
2564
.10.1016/j.jsv.2010.12.005
You do not currently have access to this content.