Abstract

Topological and vector space attributes of Euclidean space are consolidated from the mathematical literature and employed to create a differentiable manifold structure for holonomic multibody kinematics and dynamics. Using vector space properties of Euclidean space and multivariable calculus, a local kinematic parameterization is presented that establishes the regular configuration space of a multibody system as a differentiable manifold. Topological properties of Euclidean space show that this manifold is naturally partitioned into disjoint, maximal, path connected, singularity free domains of kinematic and dynamic functionality. Using the manifold parameterization, the d'Alembert variational equations of multibody dynamics yield well-posed ordinary differential equations of motion on these domains, without introducing Lagrange multipliers. Solutions of the differential equations satisfy configuration, velocity, and acceleration constraint equations and the variational equations of dynamics, i.e., multibody kinematics and dynamics are embedded in these ordinary differential equations. Two examples, one planar and one spatial, are treated using the formulation presented. Solutions obtained are shown to satisfy all three forms of kinematic constraint to within specified error tolerances, using fourth-order Runge–Kutta numerical integration methods.

References

1.
Petzold
,
L. D.
,
1982
, “
Differential/Algebraic Equations Are Not ODE's
,”
SIAM J. Sci. Stat. Comput.
,
3
(
3
), pp.
367
384
.10.1137/0903023
2.
Maggi
,
G. A.
,
1896
,
Principii Della Teoria Matematica Del Movimento Dei Corpi: Corso de Meccanica Razionale
,
Ulrico Hoepli
,
Milano, Italy
.
3.
Maggi
,
G. A.
,
1901
, “
Di Alcune Nuove Forme Delle Equazioni Della Dinamica Applicabili ai Sistemi Anolonomi
,”
Rendiconti Della Regia Academia Dei Lincei
,
X
, pp.
287
291
.
4.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1985
,
Dynamics: Theory and Applications
,
McGraw-Hill
,
New York
.
5.
Tseng
,
F.-C.
,
Ma
,
Z.-D.
, and
Hulbert
,
G. M.
,
2003
, “
Efficient Numerical Solution of Constrained Multibody Dynamics Systems
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
3–4
), pp.
439
472
.10.1016/S0045-7825(02)00521-2
6.
Bauchau
,
O. A.
, and
Laulusa
,
A.
,
2008
, “
Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011005
.10.1115/1.2803258
7.
Garcia de Jalon
,
J.
,
Callejo
,
A.
, and
Hidalgo
,
A. F.
,
2012
, “
Efficient Solution of Maggi's Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
7
, p.
021003
.10.1115/1.4005238
8.
Haug
,
E. J.
,
2018
, “
Extension of Maggi and Kane Equations to Holonomic Dynamic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
12
), p.
121003
.10.1115/1.4041579
9.
Ascher
,
U. M.
, and
Petzold
,
L. R.
,
1998
,
Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations
,
SIAM
,
Philadelphia, PA
.
10.
Haug
,
E. J.
,
2021
,
Computer-Aided Kinematics and Dynamics of Mechanical Systems
, 2nd ed., Vol.
II
,
Research Gate
, Berlin.
11.
Laulusa
,
A.
, and
Bauchau
,
O. A.
,
2008
, “
Review of Classical Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011004
.10.1115/1.2803257
12.
Blajer
,
W.
,
2011
, “
Methods for Constraint Violation Suppression in the Numerical Simulation of Constrained Multibody Systems-A Comparative Study
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
13–16
), pp.
1568
1576
.10.1016/j.cma.2011.01.007
13.
Marques
,
F.
,
Souto
,
A. P.
, and
Flores
,
P.
,
2017
, “
On the Constraints Violation in Forward Dynamics of Multibody Systems
,”
Multibody Syst. Dyn.
,
39
(
4
), pp.
385
419
.10.1007/s11044-016-9530-y
14.
Mendelson
,
B.
,
1962
,
Introduction to Topology
,
Allyn and Bacon
,
Boston, MA
.
15.
Strang
,
G.
,
1980
,
Liner Algebra and Its Applications
, 2nd ed.,
Academic Press
,
New York
.
16.
Corwin
,
L. J.
, and
Szczarba
,
R. H.
,
1982
,
Multivariable Calculus
,
Marcel Dekker
,
New York
.
17.
Lee
,
J. M.
,
2010
,
Introduction to Topological Manifolds
, 2nd ed.,
Springer
,
New York
.
18.
Schlichtkrull
,
H.
,
2015
,
Differentiable Manifolds, Department of Mathematical Sciences
,
University of Copenhagen
,
Denmark
.
19.
Stuelpnagel
,
J.
,
1964
, “
On the Parametrization of the Three-Dimensional Rotation Group
,”
SIAM Rev.
,
6
(
4
), pp.
422
430
.10.1137/1006093
20.
Pars
,
L. A.
,
1965
,
A Treatise on Analytical Dynamics
, Reprint by
Ox Bow Press
,
Woodbridge, CT
, p.
1979
.
21.
Atkinson
,
K. E.
,
1989
,
An Introduction to Numerical Analysis
, 2nd ed.,
Wiley
,
New York
.
22.
Teschl
,
G.
,
2012
,
Ordinary Differential Equations and Dynamical Systems
,
American Math Society
,
Providence, RI
.
23.
Hairer
,
E.
,
Norsett
,
S. P.
, and
Wanner
,
G.
,
1993
,
Solving Ordinary Differential Equations I: Nonstiff Problems
, 2nd ed.,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.