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Abstract

Cavitation erosion is caused by bubble collapse causing micro jets and shockwave that impact the
surfaces of materials: these impacts occur randomly over time. As such, Stochastic processes,
specifically the Poisson process, can be used to model impacts as random events occurring over time.
Peaks in pressure amplitude measurements made in time with a high-speed PVDF transducer in a
vibratory cavitation erosion apparatus based on the ASTM G32 standard were defined as impact events.
Using cumulative impact as a function of time, the rate parameter of the Poisson process was observed
to vary periodically, which indicates that the process may be a non-homogeneous Poisson process
(NHPP). Using a nonparametric estimation method, the NHPP’s cumulative rate function was
estimated, and then was fitted to a sinusoidal function with a frequency effectively equal to the
vibratory apparatus’ vibration and an average impact rate of 2.10X 10° impacts per second.
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Introduction

Cavitation occurrence in turbines, pumps and other turbomachines is a troublesome issue: cavitation bubble impacts
are a major cause of erosion and mass loss itself is difficult to model accurately [1]. Significant discrepancies between
modeled erosion rate and observed damage are still noted today [2]. One can realize the complexity and scope and the
task undertaken: turbulent flow leading to nucleation, complex bubble-bubble interaction then violent collapse,
forming shockwaves and micro-sized water jets, leading to deformation and erosion under high stress/strain rate [3].

Cavitation impact occurrence depends on parameters local to vapor bubbles that are difficult to measure [4,5], and
cavitation bubble behavior is complex, a field of study on its own: bubble dynamics. It could prove useful to model
such events as randomly occurring over time using stochastic processes, specifically Poisson point processes that can
describe the occurrence of events in space and time [6-8]. From the point of view of the material, impacts also occur
randomly on a 2D plane of generally flat geometry, and have other measurable characteristics: an amplitude, an area
of effect, impact duration etc. that vary randomly. Here we will concentrate on modelling cavitation impacts events in
time, and ignore other random variables. The confidence in the applicability of the Poisson process, the simplest of
the point processes, to model cavitation impact events will be computed.

Body

The impact amplitude distribution was measured on a vibratory cavitation erosion apparatus inspired by the ASTM
G32 standard [9]. The vibratory apparatus used had a vibration frequency of 19.5kHz and a peak-to-peak vibration
amplitude that could be adjusted from 7um to 20pm. A pump was used to recirculate water from the double-sided
beaker to a water container: the tap water around the specimen was maintained at 25 + 5°C. A schematic of the whole
setup measurement setup is presented in Figure 1.

A Miiller high-speed PVDF transducers model M60-1L-M3 was used: it has a rise time of 60ns, a sensitive diameter
of Imm, a sensitivity of -23.30 MPa/V and has a the following dynamic pressure range: -3MPa to 40MPa. A Tektronix
MS04054 oscilloscope was used to visualize and record the transducer output, with a sampling rate of at least 25MS/s,
equivalent to a timestep of 40ns, close to the rise time. The event threshold was around 10mV equivalent to a minimum
detected impact pressure of 200kPa, after filtering the data between 4kHz and 2MHz using Python.

The basic definition of a stochastic process is: a collection of random variables defined on a common probability space
indexed by a set of numbers, generally time, which describes the system’s evolution. In this context, the Poisson

*Corresponding Author, Gabriel Taillon: taillon.gabriel@asagi.waseda.jp
953

%20z IMdy 0| U0 3senb Aq ypd-zgLuUd™ 1.G8198/212£Z8¢/4Pd-19}deyD/4000/ W0 IIBYIISAIIS OpaWSE//:djY WOl papeojumod



10th International Symposium on Cavitation - CAV2018 CAV18-05192
Baltimore, Maryland, USA, May 14 — 16, 2018

process is interpreted as a counting process [6-8]: we write {N(t),t € T}, with T the continuous time T = |0, ©) and
N(t) the total number of impact events that occurred in the interval [0,t]. An impact event is defined as a local
voltage/pressure maxima in the transducer data that exceeded the 10mV noise threshold.

The simplest Stochastic process that can be used to count events is the Poisson process [6]. It has several key
properties, among which we cite: the number of events in a time interval At is completely independent from the number
of events in all other intervals. It seems reasonable to assume that the impact events are independent, though some
known physical mechanism demonstrate clustering behavior (a parent event leading to several children events).
Bubble dynamic computations, confirmed by experiments, demonstrate that a single bubble collapse event can
produce multiple predictable impact events because of multiple collapse-rebound cycles, under certain conditions
[11]. Such repeated events can be taken into account by the so-called Cluster Poisson Process if they arise.

The Poisson process is generally defined using its probability density function (PDF), which outputs the probability
P that the total number of events N (t) in the interval [0, t] is equal to i, noted P[N(t) = i]:
G2}

—e™ M,
i!

With A the single parameter of the Poisson process: the rate, or intensity. To compare the Poisson process with the
recorded data, it is useful to learn how to how to estimate the PDF from observations, and how to draw samples using

a PDF, or to simulate random variates. For the Poisson process, the expected number of points in a region is simply

E[N(t)] = At. The strong law of large numbers leads to: }im (@) = A, which demonstrates that the best estimation

PIN(t) =i] = t>0 (1)

method for the parameter of a Poisson process interpreted as a counting process is the total number of measured events
divided by the total recording time.

As for sample generation, a simple method can be derived using the fact that the impact interarrival times are
exponentially distributed with parameter A: P[t; > t] = e~*¢. This function takes a time and outputs a probability: by
isolating the time, we produce a function that outputs the time to the next event, as a function of a probability. Then,

using a uniform random number generator a distribution of interarrival times can be obtained iteratively:

thext = — lng\U) (2)

with u ~U(0,1) the randomly generated probability. With this basic understanding of stochastic processes, we can
start the analysis of the impact data. In Figure 2 (a), the raw pressure as a function of time is shown. There seems to
be some periodicity: regions with high density of impacts repeat every 40-60us at minimum, indicating it is the
fundamental frequency of a periodic phenomenon, which implies a Poisson process may not be suitable to model such
a phenomenon. By comparing the interarrival times of a Poisson process of rate equal to the total impacts divided by
the record time, Figure 3 can be obtained. Cavitation impact events do not seem to follow a Poisson distribution:
interarrival times are supposed to be exponentially distributed e.g. the number of long time periods with no impacts is
too large. To take the apparent periodicity of the rate function into account, one can turn to the Non-Homogeneous
Poisson process (NHPP)

The Poisson process described in Equation 1 indeed is homogeneous: the rate is constant in time. But one can obtain
a NHPP by letting the rate function vary with time : A(t) > 0. In the present case, the rate function is clearly periodic.
The period of the pressure wave created by the apparatus is approximately 51.3us, which provides a naive explanation
of this phenomenon: cavitation bubbles may increase in size in the low-pressure and collapse during the high-pressure
period. Unfortunately, the bubble dynamics in a vibratory apparatus are complex [12] and outside the scope of the
present research.

In any case, it is quite a bit more a bit more difficult to estimate the NHPP’s rate function, but not at all impossible.
The estimation of the cumulative rate function by the nonparametric method proposed by Leemis [13] was used. The
cumulative rate function of a NHPP, which is its expectation function A(t) = E[N(t)], is defined [6-8]:

Mﬂ:faﬁmn t>0 3)
0
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The Leemis estimator gives an approximation of A, which is noted A, for a number k of realizations of the observation
of the NHPP in a time window (0, S]. S can be, for example, all opening hours (e.g. 9AM to 5SPM) of a restaurant that
wishes to count the arrival of customers. The estimator is written:
in n(t —t;)

i+ Dk (kG + Dim — &)
A is the estimation of A, n is the total number of impacts recorded in k realizations, t; are the sorted arrival times of
the n impacts and t represents an arbitrary large number of times between t; and t;, ;. In this case, S was chosen to
be long enough to include at least 10 periods: S = 4ms, for k = 100 realizations. The value of the estimator is linear
between, t; and t; 4. If two or more impact have the same arrival time t,,, the estimator jumps to the value:

- - mn

Aty) = A(tpmr) = K+ 1) (5
Using this estimator, the rate function could be fitted to a function of the form: A(t) = A(sin(2mvt + ¢) + 1) (see
Equation (3)). In the present case, for a distance of 1.4mm between the vibrating and head and the sensor and a
vibration amplitude of 7um, A = 2.10 X 10° impacts per second. Also, the estimated period is 50.6ps, close to the
expected 51.3us. The frequency of the rate function (19.8kHz) is quite similar to the vibratory apparatus’ (19.5kHz),
but it is not possible to comment further without additional impact data, and studies on the bubble dynamics.

A(t) = ti<t<t,;i=012..,n 4)

In Figure 4 are presented the results of the estimation A compared with the fitted sinusoidal function, with 95%
confidence intervals (CI). One must take heed as the CI in Figure 4 (a) are different from those in Figure 4 (b): in
Figure 4 (a) the CI are on the expected number of events given the rate of a Poisson process (one can learn to compute
such intervals using the Poisson distribution such as described in [16] p. 182 for example), in Figure 4 (b) the CI are
on the estimation A given the observed data, as described by Leemis [13]. Figure 4 (c) presents the error between the
estimation A and the fitted sinusoidal function, compared with the error between the estimation and its CI bounds.
One expects the cumulative function to be contained in the CI bounds in 95% cases: the current fit is outside these
bounds in 8.98% cases, which is high. If the current estimation A is correct, 31.6% of all measured points are out of
the confidence bounds of the NHPP, as can be observed on the data in Figure 4 (a). The authors feel the experimental
setup may explain this unusually high variance. For example, local variation of temperature in the cavitation region
may be due to the vibrating head acting as a heat source: temperature was observed to rise close to the sample even
with temperature control using a double-sided beaker, because of the long time data recording necessitated (2min by
realization). A higher variance could be explained by the rate function A(t) itself varying over time. Better control
could provide clearer insight. Another explanation may be that some parameter in the rate function varies randomly:the
local temperature may oscillate randomly between realizations and influence the rate. In such a case, the Mixed
Poisson process could be used to model the impact events. If the rate function itself is a stochastic process, then the
cavitation impacts events can be modelled using the doubly stochastic Poisson process (Cox process).

This analysis was proposed as the first step in the elaboration of a stochastic process that could capture the random
nature of the cavitation erosion process. In subsequent experiments, the vibration frequency, vibration amplitude,
water temperature among others should be changed to observe the effect on the rate function. Also, steps will be taken
to model events in the vibratory apparatus using the mentioned other stochastic processes. Such stochastic processes
could be used to model cavitation impact events in turbines and pump as well as cavitation erosion laboratory
apparatuses such as the cavitation impact jet described in the ASTM G134 standard [17]. They could also prove useful
to build a mass-loss prediction model, by combining them with deformation and failure under strain hardening and
high strain-rate conditions, such as the Johnson-Cook dynamic failure model [10].
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Figure 1: Vibratory apparatus setup to record impact pressure as a function of time
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Figure 2: Impact pressure as a function of time for 1.4mm distance and 7pm amplitude
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Figure 3: Cumulative events as a function of time: Comparison with Poisson process of equivalent rate
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(a): Observed data for k = 100 realizations (b): Estimated rate function fitted with a (c): Fitting error: 8,98% of points of the
compared with A estimation sinusoidal rate function fit are outside the 95% CI
Figure 4: Rate function estimated using the nonparametric method in Leemis [13]

Conclusion

Cavitation erosion impacts occur randomly over time and as such can be modeled as a Stochastic process. The simplest
is the Poisson process, for which the only parameter is the rate parameter. Using a high-speed PVDF pressure sensor
to detect impacts in a vibratory apparatus, periodic spikes in the arrival indicated that the rate parameter varies over
time: the Poisson process is non-homogeneous. Using a non-parametric method by Leemis [13], the cumulative rate
function was observed to be sinusoidal, with a frequency close to the driving transducer: 19.8kHz compared to
19.5kHz. Cavitation impacts were recorded for 4ms, 100 times to produce said estimation. An average of 2.10x 10°
impacts per second were observed. Fitting the estimated cumulative rate function using a sinusoidal function proved
relatively accurate, but 31.8% of all data points fall outside the 95% confidence intervals which is unusually high.
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