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As a result, it is believed that DO combines with Cr to form oxides on the processed specimen surface, causing DO in 
the water to decrease. During MFC, the bubbles (which have a high internal temperature and pressure) increase the 
sample surface temperature to a greater extent than during WJC processing due to the hot-spot phenomenon inside the 
bubbles. Thus, the DO concentration is reduced to a greater degree as a passive layer is generated. As described above, 
in the MFC technique, bubbles having characteristically high temperature and high pressure collide with the specimen 
surface as the result of irradiating large bubbles generated by WJC with ultrasonic waves. This method effectively 
improves the surface residual stress via surface modification and also increases the specimen strength and corrosion 
resistance.  

Conclusion 
Improvements in residual stress and surface modification leading to high strength and corrosion resistance were found 
to occur at the surfaces of specimens processed with MFC. Corrosion resistance was improved via the formation of 
an oxide film by selective oxidation, as well as the reduction of surface defects. We concluded that this oxide film 
was formed by dissolved oxygen in the water reacting with Cr on the metal surface during the MFC treatment. 
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Abstract  
Cavitation erosion is caused by bubble collapse causing micro jets and shockwave that impact the 
surfaces of materials: these impacts occur randomly over time. As such, Stochastic processes, 
specifically the Poisson process, can be used to model impacts as random events occurring over time. 
Peaks in pressure amplitude measurements made in time with a high-speed PVDF transducer in a 
vibratory cavitation erosion apparatus based on the ASTM G32 standard were defined as impact events. 
Using cumulative impact as a function of time, the rate parameter of the Poisson process was observed 
to vary periodically, which indicates that the process may be a non-homogeneous Poisson process 
(NHPP). Using a nonparametric estimation method, the NHPP’s cumulative rate function was 
estimated, and then was fitted to a sinusoidal function with a frequency effectively equal to the 
vibratory apparatus’ vibration and an average impact rate of 2.10× 105 impacts per second. 

Keywords: Impacts; Cavitation erosion; Vibratory apparatus; Poisson process; Stochastic process  

Introduction  
Cavitation occurrence in turbines, pumps and other turbomachines is a troublesome issue: cavitation bubble impacts 
are a major cause of erosion and mass loss itself is difficult to model accurately [1]. Significant discrepancies between 
modeled erosion rate and observed damage are still noted today [2]. One can realize the complexity and scope and the 
task undertaken: turbulent flow leading to nucleation, complex bubble-bubble interaction then violent collapse, 
forming shockwaves and micro-sized water jets, leading to deformation and erosion under high stress/strain rate [3].  

Cavitation impact occurrence depends on parameters local to vapor bubbles that are difficult to measure [4,5], and 
cavitation bubble behavior is complex, a field of study on its own: bubble dynamics. It could prove useful to model 
such events as randomly occurring over time using stochastic processes, specifically Poisson point processes that can 
describe the occurrence of events in space and time [6-8]. From the point of view of the material, impacts also occur 
randomly on a 2D plane of generally flat geometry, and have other measurable characteristics: an amplitude, an area 
of effect, impact duration etc. that vary randomly. Here we will concentrate on modelling cavitation impacts events in 
time, and ignore other random variables. The confidence in the applicability of the Poisson process, the simplest of 
the point processes, to model cavitation impact events will be computed. 

Body  
The impact amplitude distribution was measured on a vibratory cavitation erosion apparatus inspired by the ASTM 
G32 standard [9]. The vibratory apparatus used had a vibration frequency of 19.5kHz and a peak-to-peak vibration 
amplitude that could be adjusted from 7µm to 20µm. A pump was used to recirculate water from the double-sided 
beaker to a water container: the tap water around the specimen was maintained at 25 ± 5°𝐶𝐶𝐶𝐶. A schematic of the whole 
setup measurement setup is presented in Figure 1.  

A Müller high-speed PVDF transducers model M60-1L-M3 was used: it has a rise time of 60ns, a sensitive diameter 
of 1mm, a sensitivity of -23.30 MPa/V and has a the following dynamic pressure range: -3MPa to 40MPa. A Tektronix 
MSO4054 oscilloscope was used to visualize and record the transducer output, with a sampling rate of at least 25MS/s, 
equivalent to a timestep of 40ns, close to the rise time. The event threshold was around 10mV equivalent to a minimum 
detected impact pressure of 200kPa, after filtering the data between 4kHz and 2MHz using Python. 

The basic definition of a stochastic process is: a collection of random variables defined on a common probability space 
indexed by a set of numbers, generally time, which describes the system’s evolution. In this context, the Poisson 
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process is interpreted as a counting process [6-8]: we write {𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡), 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡}, with 𝑡𝑡𝑡𝑡 the continuous time 𝑡𝑡𝑡𝑡 = |0,∞) and 
𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡) the total number of impact events that occurred in the interval [0, 𝑡𝑡𝑡𝑡]. An impact event is defined as a local 
voltage/pressure maxima in the transducer data that exceeded the 10mV noise threshold. 
 
The simplest Stochastic process that can be used to count events is the Poisson process [6]. It has several key 
properties, among which we cite: the number of events in a time interval Δt is completely independent from the number 
of events in all other intervals. It seems reasonable to assume that the impact events are independent, though some 
known physical mechanism demonstrate clustering behavior (a parent event leading to several children events).   
Bubble dynamic computations, confirmed by experiments, demonstrate that a single bubble collapse event can 
produce multiple predictable impact events because of multiple collapse-rebound cycles, under certain conditions 
[11]. Such repeated events can be taken into account by the so-called Cluster Poisson Process if they arise. 
 
The Poisson process is generally defined using its probability density function (PDF), which outputs the probability 
𝑃𝑃𝑃𝑃 that the total number of events 𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡) in the interval [0, 𝑡𝑡𝑡𝑡] is equal to 𝑖𝑖𝑖𝑖, noted 𝑃𝑃𝑃𝑃[𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡) = 𝑖𝑖𝑖𝑖]: 

 𝑃𝑃𝑃𝑃[𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡) = 𝑖𝑖𝑖𝑖] =
(𝜆𝜆𝜆𝜆𝑡𝑡𝑡𝑡)𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖!
𝑒𝑒𝑒𝑒−𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 , 𝑡𝑡𝑡𝑡 ≥ 0 (1) 

With 𝜆𝜆𝜆𝜆 the single parameter of the Poisson process: the rate, or intensity. To compare the Poisson process with the 
recorded data, it is useful to learn how to how to estimate the PDF from observations, and how to draw samples using 
a PDF, or to simulate random variates. For the Poisson process, the expected number of points in a region is simply 
𝐸𝐸𝐸𝐸[𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡)] = λt. The strong law of large numbers leads to: lim

𝜆𝜆𝜆𝜆→∞
�𝑁𝑁𝑁𝑁(𝜆𝜆𝜆𝜆)

𝜆𝜆𝜆𝜆
� = 𝜆𝜆𝜆𝜆, which demonstrates that the best estimation 

method for the parameter of a Poisson process interpreted as a counting process is the total number of measured events 
divided by the total recording time.  
 
As for sample generation, a simple method can be derived using the fact that the impact interarrival times are 
exponentially distributed with parameter 𝜆𝜆𝜆𝜆: 𝑃𝑃𝑃𝑃[𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖 > 𝑡𝑡𝑡𝑡] = 𝑒𝑒𝑒𝑒−𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆. This function takes a time and outputs a probability: by 
isolating the time, we produce a function that outputs the time to the next event, as a function of a probability. Then, 
using a uniform random number generator a distribution of interarrival times can be obtained iteratively: 

 𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜆𝜆𝜆𝜆 = −
ln(𝑢𝑢𝑢𝑢)
λ

 (2) 

with 𝑢𝑢𝑢𝑢 ~𝑈𝑈𝑈𝑈(0,1) the randomly generated probability. With this basic understanding of stochastic processes, we can 
start the analysis of the impact data. In Figure 2 (a), the raw pressure as a function of time is shown. There seems to 
be some periodicity: regions with high density of impacts repeat every 40-60µs at minimum, indicating it is the 
fundamental frequency of a periodic phenomenon, which implies a Poisson process may not be suitable to model such 
a phenomenon. By comparing the interarrival times of a Poisson process of rate equal to the total impacts divided by 
the record time, Figure 3 can be obtained. Cavitation impact events do not seem to follow a Poisson distribution: 
interarrival times are supposed to be exponentially distributed e.g. the number of long time periods with no impacts is 
too large. To take the apparent periodicity of the rate function into account, one can turn to the Non-Homogeneous 
Poisson process (NHPP) 
 
The Poisson process described in Equation 1 indeed is homogeneous: the rate is constant in time. But one can obtain 
a NHPP by letting the rate function vary with time : 𝜆𝜆𝜆𝜆(𝑡𝑡𝑡𝑡) ≥ 0. In the present case, the rate function is clearly periodic. 
The period of the pressure wave created by the apparatus is approximately 51.3µs, which provides a naïve explanation 
of this phenomenon: cavitation bubbles may increase in size in the low-pressure and collapse during the high-pressure 
period. Unfortunately, the bubble dynamics in a vibratory apparatus are complex [12] and outside the scope of the 
present research. 
 
In any case, it is quite a bit more a bit more difficult to estimate the NHPP’s rate function, but not at all impossible.  
The estimation of the cumulative rate function by the nonparametric method proposed by Leemis [13] was used. The 
cumulative rate function of a NHPP, which is its expectation function Λ(𝑡𝑡𝑡𝑡) ≡ 𝐸𝐸𝐸𝐸[𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡)], is defined [6-8]: 

 Λ(𝑡𝑡𝑡𝑡) = � 𝜆𝜆𝜆𝜆(𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏
𝜆𝜆𝜆𝜆

0
, 𝑡𝑡𝑡𝑡 > 0 (3) 
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The Leemis estimator gives an approximation of Λ, which is noted Λ�, for a number 𝑘𝑘𝑘𝑘 of realizations of the observation 
of the NHPP in a time window (0, 𝑆𝑆𝑆𝑆]. 𝑆𝑆𝑆𝑆 can be, for example, all opening hours (e.g. 9AM to 5PM) of a restaurant that 
wishes to count the arrival of customers. The estimator is written: 

 Λ�(𝑡𝑡𝑡𝑡) =
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑖𝑖𝑖𝑖 + 1)𝑘𝑘𝑘𝑘
+ �

𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖)
𝑘𝑘𝑘𝑘(𝑖𝑖𝑖𝑖 + 1)(𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖+1 − 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖)

� , 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 < 𝑡𝑡𝑡𝑡 ≤ 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖+1;  𝑖𝑖𝑖𝑖 = 0,1,2, … ,𝑖𝑖𝑖𝑖 (4) 

Λ� is the estimation of Λ, 𝑖𝑖𝑖𝑖 is the total number of impacts recorded in 𝑘𝑘𝑘𝑘 realizations, 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 are the sorted arrival times of 
the 𝑖𝑖𝑖𝑖 impacts and 𝑡𝑡𝑡𝑡 represents an arbitrary large number of times between 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 and 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖+1. In this case, 𝑆𝑆𝑆𝑆 was chosen to 
be long enough to include at least 10 periods: 𝑆𝑆𝑆𝑆 = 4𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, for 𝑘𝑘𝑘𝑘 = 100 realizations. The value of the estimator is linear 
between, 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 and 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖+1. If two or more impact have the same arrival time 𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚, the estimator jumps to the value: 

 Λ�(𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚) = Λ�(𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚+1) =
𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖

𝑘𝑘𝑘𝑘(𝑖𝑖𝑖𝑖 + 1)
 (5) 

Using this estimator, the rate function could be fitted to a function of the form:  𝜆𝜆𝜆𝜆(𝑡𝑡𝑡𝑡) = 𝐴𝐴𝐴𝐴(sin(2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑡𝑡𝑡𝑡 + 𝜙𝜙𝜙𝜙) + 1) (see 
Equation (3)). In the present case, for a distance of 1.4mm between the vibrating and head and the sensor and a 
vibration amplitude of 7µm, 𝐴𝐴𝐴𝐴 = 2.10 × 105 impacts per second. Also, the estimated period is 50.6µs, close to the 
expected 51.3µs. The frequency of the rate function (19.8kHz) is quite similar to the vibratory apparatus’ (19.5kHz), 
but it is not possible to comment further without additional impact data, and studies on the bubble dynamics. 
 
In Figure 4 are presented the results of the estimation Λ� compared with the fitted sinusoidal function, with 95% 
confidence intervals (CI). One must take heed as the CI in Figure 4 (a) are different from those in Figure 4 (b): in 
Figure 4 (a) the CI are on the expected number of events given the rate of a Poisson process (one can learn to compute 
such intervals using the Poisson distribution such as described in [16] p. 182 for example), in Figure 4 (b) the CI are 
on the estimation Λ� given the observed data, as described by Leemis [13]. Figure 4 (c) presents the error between the 
estimation Λ� and the fitted sinusoidal function, compared with the error between the estimation and its CI bounds. 
One expects the cumulative function to be contained in the CI bounds in 95% cases: the current fit is outside these 
bounds in 8.98% cases, which is high. If the current estimation Λ� is correct, 31.6% of all measured points are out of 
the confidence bounds of the NHPP, as can be observed on the data in Figure 4 (a). The authors feel the experimental 
setup may explain this unusually high variance. For example, local variation of temperature in the cavitation region 
may be due to the vibrating head acting as a heat source: temperature was observed to rise close to the sample even 
with temperature control using a double-sided beaker, because of the long time data recording necessitated (2min by 
realization). A higher variance could be explained by the rate function 𝜆𝜆𝜆𝜆(𝑡𝑡𝑡𝑡) itself varying over time. Better control 
could provide clearer insight. Another explanation may be that some parameter in the rate function varies randomly:the 
local temperature may oscillate randomly between realizations and influence the rate. In such a case, the Mixed 
Poisson process could be used to model the impact events. If the rate function itself is a stochastic process, then the 
cavitation impacts events can be modelled using the doubly stochastic Poisson process (Cox process). 
 
This analysis was proposed as the first step in the elaboration of a stochastic process that could capture the random 
nature of the cavitation erosion process. In subsequent experiments, the vibration frequency, vibration amplitude, 
water temperature among others should be changed to observe the effect on the rate function. Also, steps will be taken 
to model events in the vibratory apparatus using the mentioned other stochastic processes. Such stochastic processes 
could be used to model cavitation impact events in turbines and pump as well as cavitation erosion laboratory 
apparatuses such as the cavitation impact jet described in the ASTM G134 standard [17]. They could also prove useful 
to build a mass-loss prediction model, by combining them with deformation and failure under strain hardening and 
high strain-rate conditions, such as the Johnson-Cook dynamic failure model [10].   
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process is interpreted as a counting process [6-8]: we write {𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡), 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡}, with 𝑡𝑡𝑡𝑡 the continuous time 𝑡𝑡𝑡𝑡 = |0,∞) and 
𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡) the total number of impact events that occurred in the interval [0, 𝑡𝑡𝑡𝑡]. An impact event is defined as a local 
voltage/pressure maxima in the transducer data that exceeded the 10mV noise threshold. 
 
The simplest Stochastic process that can be used to count events is the Poisson process [6]. It has several key 
properties, among which we cite: the number of events in a time interval Δt is completely independent from the number 
of events in all other intervals. It seems reasonable to assume that the impact events are independent, though some 
known physical mechanism demonstrate clustering behavior (a parent event leading to several children events).   
Bubble dynamic computations, confirmed by experiments, demonstrate that a single bubble collapse event can 
produce multiple predictable impact events because of multiple collapse-rebound cycles, under certain conditions 
[11]. Such repeated events can be taken into account by the so-called Cluster Poisson Process if they arise. 
 
The Poisson process is generally defined using its probability density function (PDF), which outputs the probability 
𝑃𝑃𝑃𝑃 that the total number of events 𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡) in the interval [0, 𝑡𝑡𝑡𝑡] is equal to 𝑖𝑖𝑖𝑖, noted 𝑃𝑃𝑃𝑃[𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡) = 𝑖𝑖𝑖𝑖]: 

 𝑃𝑃𝑃𝑃[𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡) = 𝑖𝑖𝑖𝑖] =
(𝜆𝜆𝜆𝜆𝑡𝑡𝑡𝑡)𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖!
𝑒𝑒𝑒𝑒−𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 , 𝑡𝑡𝑡𝑡 ≥ 0 (1) 

With 𝜆𝜆𝜆𝜆 the single parameter of the Poisson process: the rate, or intensity. To compare the Poisson process with the 
recorded data, it is useful to learn how to how to estimate the PDF from observations, and how to draw samples using 
a PDF, or to simulate random variates. For the Poisson process, the expected number of points in a region is simply 
𝐸𝐸𝐸𝐸[𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡)] = λt. The strong law of large numbers leads to: lim

𝜆𝜆𝜆𝜆→∞
�𝑁𝑁𝑁𝑁(𝜆𝜆𝜆𝜆)

𝜆𝜆𝜆𝜆
� = 𝜆𝜆𝜆𝜆, which demonstrates that the best estimation 

method for the parameter of a Poisson process interpreted as a counting process is the total number of measured events 
divided by the total recording time.  
 
As for sample generation, a simple method can be derived using the fact that the impact interarrival times are 
exponentially distributed with parameter 𝜆𝜆𝜆𝜆: 𝑃𝑃𝑃𝑃[𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖 > 𝑡𝑡𝑡𝑡] = 𝑒𝑒𝑒𝑒−𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆. This function takes a time and outputs a probability: by 
isolating the time, we produce a function that outputs the time to the next event, as a function of a probability. Then, 
using a uniform random number generator a distribution of interarrival times can be obtained iteratively: 

 𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜆𝜆𝜆𝜆 = −
ln(𝑢𝑢𝑢𝑢)
λ

 (2) 

with 𝑢𝑢𝑢𝑢 ~𝑈𝑈𝑈𝑈(0,1) the randomly generated probability. With this basic understanding of stochastic processes, we can 
start the analysis of the impact data. In Figure 2 (a), the raw pressure as a function of time is shown. There seems to 
be some periodicity: regions with high density of impacts repeat every 40-60µs at minimum, indicating it is the 
fundamental frequency of a periodic phenomenon, which implies a Poisson process may not be suitable to model such 
a phenomenon. By comparing the interarrival times of a Poisson process of rate equal to the total impacts divided by 
the record time, Figure 3 can be obtained. Cavitation impact events do not seem to follow a Poisson distribution: 
interarrival times are supposed to be exponentially distributed e.g. the number of long time periods with no impacts is 
too large. To take the apparent periodicity of the rate function into account, one can turn to the Non-Homogeneous 
Poisson process (NHPP) 
 
The Poisson process described in Equation 1 indeed is homogeneous: the rate is constant in time. But one can obtain 
a NHPP by letting the rate function vary with time : 𝜆𝜆𝜆𝜆(𝑡𝑡𝑡𝑡) ≥ 0. In the present case, the rate function is clearly periodic. 
The period of the pressure wave created by the apparatus is approximately 51.3µs, which provides a naïve explanation 
of this phenomenon: cavitation bubbles may increase in size in the low-pressure and collapse during the high-pressure 
period. Unfortunately, the bubble dynamics in a vibratory apparatus are complex [12] and outside the scope of the 
present research. 
 
In any case, it is quite a bit more a bit more difficult to estimate the NHPP’s rate function, but not at all impossible.  
The estimation of the cumulative rate function by the nonparametric method proposed by Leemis [13] was used. The 
cumulative rate function of a NHPP, which is its expectation function Λ(𝑡𝑡𝑡𝑡) ≡ 𝐸𝐸𝐸𝐸[𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡)], is defined [6-8]: 

 Λ(𝑡𝑡𝑡𝑡) = � 𝜆𝜆𝜆𝜆(𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏
𝜆𝜆𝜆𝜆

0
, 𝑡𝑡𝑡𝑡 > 0 (3) 
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The Leemis estimator gives an approximation of Λ, which is noted Λ�, for a number 𝑘𝑘𝑘𝑘 of realizations of the observation 
of the NHPP in a time window (0, 𝑆𝑆𝑆𝑆]. 𝑆𝑆𝑆𝑆 can be, for example, all opening hours (e.g. 9AM to 5PM) of a restaurant that 
wishes to count the arrival of customers. The estimator is written: 

 Λ�(𝑡𝑡𝑡𝑡) =
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑖𝑖𝑖𝑖 + 1)𝑘𝑘𝑘𝑘
+ �

𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖)
𝑘𝑘𝑘𝑘(𝑖𝑖𝑖𝑖 + 1)(𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖+1 − 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖)

� , 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 < 𝑡𝑡𝑡𝑡 ≤ 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖+1;  𝑖𝑖𝑖𝑖 = 0,1,2, … ,𝑖𝑖𝑖𝑖 (4) 

Λ� is the estimation of Λ, 𝑖𝑖𝑖𝑖 is the total number of impacts recorded in 𝑘𝑘𝑘𝑘 realizations, 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 are the sorted arrival times of 
the 𝑖𝑖𝑖𝑖 impacts and 𝑡𝑡𝑡𝑡 represents an arbitrary large number of times between 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 and 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖+1. In this case, 𝑆𝑆𝑆𝑆 was chosen to 
be long enough to include at least 10 periods: 𝑆𝑆𝑆𝑆 = 4𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, for 𝑘𝑘𝑘𝑘 = 100 realizations. The value of the estimator is linear 
between, 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 and 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖+1. If two or more impact have the same arrival time 𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚, the estimator jumps to the value: 

 Λ�(𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚) = Λ�(𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚+1) =
𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖

𝑘𝑘𝑘𝑘(𝑖𝑖𝑖𝑖 + 1)
 (5) 

Using this estimator, the rate function could be fitted to a function of the form:  𝜆𝜆𝜆𝜆(𝑡𝑡𝑡𝑡) = 𝐴𝐴𝐴𝐴(sin(2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑡𝑡𝑡𝑡 + 𝜙𝜙𝜙𝜙) + 1) (see 
Equation (3)). In the present case, for a distance of 1.4mm between the vibrating and head and the sensor and a 
vibration amplitude of 7µm, 𝐴𝐴𝐴𝐴 = 2.10 × 105 impacts per second. Also, the estimated period is 50.6µs, close to the 
expected 51.3µs. The frequency of the rate function (19.8kHz) is quite similar to the vibratory apparatus’ (19.5kHz), 
but it is not possible to comment further without additional impact data, and studies on the bubble dynamics. 
 
In Figure 4 are presented the results of the estimation Λ� compared with the fitted sinusoidal function, with 95% 
confidence intervals (CI). One must take heed as the CI in Figure 4 (a) are different from those in Figure 4 (b): in 
Figure 4 (a) the CI are on the expected number of events given the rate of a Poisson process (one can learn to compute 
such intervals using the Poisson distribution such as described in [16] p. 182 for example), in Figure 4 (b) the CI are 
on the estimation Λ� given the observed data, as described by Leemis [13]. Figure 4 (c) presents the error between the 
estimation Λ� and the fitted sinusoidal function, compared with the error between the estimation and its CI bounds. 
One expects the cumulative function to be contained in the CI bounds in 95% cases: the current fit is outside these 
bounds in 8.98% cases, which is high. If the current estimation Λ� is correct, 31.6% of all measured points are out of 
the confidence bounds of the NHPP, as can be observed on the data in Figure 4 (a). The authors feel the experimental 
setup may explain this unusually high variance. For example, local variation of temperature in the cavitation region 
may be due to the vibrating head acting as a heat source: temperature was observed to rise close to the sample even 
with temperature control using a double-sided beaker, because of the long time data recording necessitated (2min by 
realization). A higher variance could be explained by the rate function 𝜆𝜆𝜆𝜆(𝑡𝑡𝑡𝑡) itself varying over time. Better control 
could provide clearer insight. Another explanation may be that some parameter in the rate function varies randomly:the 
local temperature may oscillate randomly between realizations and influence the rate. In such a case, the Mixed 
Poisson process could be used to model the impact events. If the rate function itself is a stochastic process, then the 
cavitation impacts events can be modelled using the doubly stochastic Poisson process (Cox process). 
 
This analysis was proposed as the first step in the elaboration of a stochastic process that could capture the random 
nature of the cavitation erosion process. In subsequent experiments, the vibration frequency, vibration amplitude, 
water temperature among others should be changed to observe the effect on the rate function. Also, steps will be taken 
to model events in the vibratory apparatus using the mentioned other stochastic processes. Such stochastic processes 
could be used to model cavitation impact events in turbines and pump as well as cavitation erosion laboratory 
apparatuses such as the cavitation impact jet described in the ASTM G134 standard [17]. They could also prove useful 
to build a mass-loss prediction model, by combining them with deformation and failure under strain hardening and 
high strain-rate conditions, such as the Johnson-Cook dynamic failure model [10].   
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Figures & Tables: 

  
Figure 1: Vibratory apparatus setup to record impact pressure as a function of time 

 
(a): Raw high pressure sensor output 

 
(b): Peaks were detected taking the first order difference (with 

peakutils, a python package) 
Figure 2: Impact pressure as a function of time for 1.4mm distance and 7µm amplitude 

 
Figure 3: Cumulative events as a function of time: Comparison with Poisson process of equivalent rate 
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(a): Observed data for 𝑘𝑘𝑘𝑘 = 100 realizations 
compared with Λ� estimation 

 (b): Estimated rate function fitted with a 
sinusoidal rate function 

(c): Fitting error: 8,98% of points of the 
fit are outside the 95% CI 

Figure 4: Rate function estimated using the nonparametric method in Leemis [13] 

 

Conclusion 
Cavitation erosion impacts occur randomly over time and as such can be modeled as a Stochastic process. The simplest 
is the Poisson process, for which the only parameter is the rate parameter. Using a high-speed PVDF pressure sensor 
to detect impacts in a vibratory apparatus, periodic spikes in the arrival indicated that the rate parameter varies over 
time: the Poisson process is non-homogeneous. Using a non-parametric method by Leemis [13], the cumulative rate 
function was observed to be sinusoidal, with a frequency close to the driving transducer: 19.8kHz compared to 
19.5kHz. Cavitation impacts were recorded for 4ms, 100 times to produce said estimation. An average of 2.10× 105 
impacts per second were observed. Fitting the estimated cumulative rate function using a sinusoidal function proved 
relatively accurate, but 31.8% of all data points fall outside the 95% confidence intervals which is unusually high. 
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Figure 1: Vibratory apparatus setup to record impact pressure as a function of time 

 
(a): Raw high pressure sensor output 

 
(b): Peaks were detected taking the first order difference (with 
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Figure 2: Impact pressure as a function of time for 1.4mm distance and 7µm amplitude 
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(a): Observed data for 𝑘𝑘𝑘𝑘 = 100 realizations 
compared with Λ� estimation 

 (b): Estimated rate function fitted with a 
sinusoidal rate function 

(c): Fitting error: 8,98% of points of the 
fit are outside the 95% CI 

Figure 4: Rate function estimated using the nonparametric method in Leemis [13] 

 

Conclusion 
Cavitation erosion impacts occur randomly over time and as such can be modeled as a Stochastic process. The simplest 
is the Poisson process, for which the only parameter is the rate parameter. Using a high-speed PVDF pressure sensor 
to detect impacts in a vibratory apparatus, periodic spikes in the arrival indicated that the rate parameter varies over 
time: the Poisson process is non-homogeneous. Using a non-parametric method by Leemis [13], the cumulative rate 
function was observed to be sinusoidal, with a frequency close to the driving transducer: 19.8kHz compared to 
19.5kHz. Cavitation impacts were recorded for 4ms, 100 times to produce said estimation. An average of 2.10× 105 
impacts per second were observed. Fitting the estimated cumulative rate function using a sinusoidal function proved 
relatively accurate, but 31.8% of all data points fall outside the 95% confidence intervals which is unusually high. 

References 
[1] Singh, R., Tiwari, S. K., & Mishra, S. K. (2012). Cavitation erosion in hydraulic turbine components and mitigation by 
coatings: Current status and future needs. Journal of materials engineering and performance, 21(7), 1539-1551. 
[2] Turbomachinery Society of Japan, TSJ Guideline; Guideline for Prediction and Evaluation of Cavitation Erosion in Pumps, 
TSJ G 001:2011, (2016), 93-96. (Partly translated from Japanese to English) 
[3] Kim, K.-H., Chahine, G., Franc, J.-P., & Karimi, A. (2014). Advanced Experimental and Numerical Techniques for 
Cavitation Erosion Prediction. (R. Moreau & A. Thess, Eds.) (Vol. 106). Dordrecht: Springer Netherlands. 
[4] Leigthon, T. G. (1994). The Acoustic Bubble (First ed.): Academic Press Limited. 
[5] Brennen, C. E. (1995). Cavitation and bubble dynamics: Oxford University Press. 
[6] Snyder, D. L., & Miller, M. I. (1991). Random point processes in Time and Space (Second ed.): Springer-Verlag. 
[7] Nelson, R. (1995). Probability, Stochastic Processes and queuing theory (First ed.): Springer Science+Business Media, LLC. 
[8] Resnick, S. I. (2002). Adventures in Stochastic Processes (3rd ed.): Springer Science+Business Media, LLC. 
[9] ASTM G32-16, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, ASTM International, West 
Conshohocken, PA, 2016, www.astm.org 
[10] Johnson, G. R., & Cook, W. H. (1983). A constitutive model and data for metals subjected to large strains, high strain rates 
and high temperatures. In 7th International Symposium on Ballistics (pp. 541–547). http://doi.org/10.1038/nrm3209 
[11] Advanced Experimental and numerical Techniques for cavitation erosion prediction. (2014).  (K.-H. Kim, G. Chahine, J.-P. 
Franc, & A. Karimini Eds.  Vol. 106): Springer. 
[12] Hansson, I., & Mørch, K. A. (1980). The dynamics of cavity clusters in ultrasonic (vibratory) cavitation erosion. Journal of 
Applied Physics, 51(9), 4651-4658. 
[13] Leemis, L. M. (1991). Nonparametric estimation of the cumulative intensity function for a nonhomogeneous poisson 
process. Management Science, 73(7).  
[14] Pasupathy, R. (2010). Generating homogeneous poisson processes. Wiley Encyclopedia of Operations Research and 
Management Science. 
[15] Çinlar, E. (2013). Introduction to stochastic processes. Courier Corporation. 
[16] Sachs, L. (2012). Applied statistics: a handbook of techniques. (Second ed.) Springer Science & Business Media.  
[17] ASTM G134-17, Standard Test Method for Erosion of Solid Materials by Cavitating Liquid Jet, ASTM International, West 
Conshohocken, PA, 2016, www.astm.org 
 

10th International Symposium on Cavitation - CAV2018 
Baltimore, Maryland, USA, May 14 – 16, 2018

CAV18-05192 

© 2018 ASME

D
ow

nloaded from
 http://asm

edc.silverchair.com
/book/chapter-pdf/3823212/861851_ch182.pdf by guest on 10 April 2024


	Introduction
	Body
	Conclusion
	References

