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Abstract

An acoustic cavitation model for noncondensable gas/vapor bubbles that couples spherical bubble
dynamics by the Keller-Miksis equation to the Plesset-Zwick equation is constructed by accounting for
phase change, but neglecting the mass diffusion of the noncondensable gas. Results obtained for
acoustically driven air/water-vapor cavitation bubbles using two different acoustic pressure signals and
variable fluid properties show reasonable agreement with the reduced order model of Preston et al.
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Introduction

Acoustic cavitation has aplications in sonochemistry [1], sonoluminescence [2,3] and medical ultasound [4,5] where
bubbles of a few microns size grow and collapse to sizes that vary by orders of magnitude, especially at ultrasonic
frequencies. In this case the pressure and temperature inside the bubble can show variations by orders of magnitude.
Many complex acoustic cavitation models are constructed [6-12] for the numerical simulation of the temperature and
pressure distributions under acoustically driven frequencies. However, when the complexity of the models and the
computational time required for their simulation are taken into account, the need for simplified expressions for the
gas pressure and temperature inside the bubble is obvious. This need becomes more important in hydrodynamic
cavitation. In this investigation the heat conduction through the bubble is considered by the solution of Prosperetti’s
equation [8] in the uniform pressure approximation by a novel iterative method [13]. This iterative method leads to
the desired reduced order gas pressure law exhibiting power law dependence on the bubble wall temperature and
bubble radius, with the polytropic index depending on the isentropic exponent of the gas and on a parameter which is
a function of the Peclet number. Moreover, it is shown that this reduced order gas pressure law reduces to the classical
isothermal and adiabatic laws in the appropriate limits of the parameter. The bubble wall temperature entering this
reduced order gas pressure law is obtained from the Plesset-Zwick solution [14]. Using this reduced order gas pressure
law, an acoustic cavitation model for noncondensable gas/vapor bubbles that couples spherical bubble dynamics by
the Keller-Miksis equation to the Plesset-Zwick equation is constructed by accounting for phase change, but neglecting
the mass diffusion of the noncondensable gas. Results obtained for acoustically driven air/water-vapor cavitation
bubbles using two different acoustic pressure signals and variable fluid properties show reasonable agreement with
the reduced order model of Preston et al. [10] for a suitable value of the parameter.

An Acoustic Cavitation Model Using A Novel Reduced Order Gas Pressure Law
We consider the thermal behavior of a single spherical gas bubble surrounded by a liquid in the uniform pressure
appproximation. The temperature distribution inside the bubble is then given by the Prosperetti equation [8, 13,15]
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where T is the temperature within the bubble, p is the uniform gas pressure inside the bubble, R is the instantaneous
bubble radius, A(7) is the temperature dependent thermal conductivity of the gas, y is the isentropic exponent of the
gas, Y is the normalized radial coordinate normalized and t is the time, all normalized with respect to some reference
quantities [15]. In eq. (1) the Peclet number Pe is defined by
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where p'o and T'o are, respectively, the bulk liquid equilibrium pressure and temperature with @' denoting a
characteristic time, A'r denoting the thermal conductivity of the gas at the bubble wall temperature and R'g denoting
the initial equilibrium bubble radius. The gas pressure within the bubble in the uniform pressure approximation is then
obtained by solving the differential equation

d _3yp L [for) _dR
dt R (PRl oy ) Pt | 3)

The system of the coupled differential egs. (1) and (3) is then solved subject to the initial and boundary conditions
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By expanding the temperature distribution near the bubble wall in the form
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and by neglecting the temperature dependence of the gas thermal conductivity, substitution of eq. (5) into eq. (1) and
taking the limit as y— /" yield the expression

oT (Pe)R*| p dT, (y-1dp| 1(o°T
c(t)=| — = —— - — =zl ==z (6)
), 2 | T, dt yodt] 2\ay* )

for the temperature gradient at the bubble wall. Utilizing eq. (6), we can obtain successive iterative approximations
for the gas pressure from the solution of eq. (3). The first approximation, which neglects the second order radial
derivative, is already discussed in [13], but this approximation does not produce dependence on the Peclet number
and is thus inconvenient for all Peclet numbers. In the second approximation the second order radial derivative is taken
to be proportional to the radial temperature gradient at the bubble wall, with the proportionality factor f exhibiting
Peclet number dependence as well as weak dependence on time scale. Under this assumption substitution of eq. (6)
into eq. (3), upon exact integration, leads to the novel reduced order gas pressure law in the form
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where I is a polytropic index given by
= 2}/(1+ f ) (8)
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with f denoting a parameter depending on the Peclet number. It can further be shown that the novel reduced order gas
pressure law given by egs. (7) and (8) reduces to the isothermal law when y=1 (or f=1/2) and Tr=1, and to the classical
adiabatic law as f—oo. Using this reduced order gas pressure law, we can construct an acoustic cavitation model for
bubbly liquids containing noncondensable gas/vapor bubbles. Assuming that the noncondensable gas/vapor bubbles
consist of ideal gases and using the reduced order gas pressure law for the noncondensable gas, the total normalized
mixture pressure Py inside the bubble can be written in the form

)| 0
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where pysat(Tr) is the normalized saturation pressure of the vapor at the bubble wall and pgo is the normalized initial
equilibrium gas pressure. For the bubble wall temperature Tr, by assuming that most of the latent heat of condensation
at the bubble wall is transferred to the liquid side since the thermal conductivity of the noncondensable gas/vapor
mixture is much smaller than that of the liquid, we use the Plesset-Zwick solution in the form [14]
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where L=L"/L¢" and pysa=p'v,5at/p'vo with L' and p'vsar denoting, respectively, the latent heat of vaporization of the
liquid and the saturated vapor density at the bubble wall temperature and where 0 denotes the properties at the bulk
liquid temperature. The constant B in eq. (10) is defined by
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with Cp'r0, p'eo and a'sy denoting, respectively, the specific heat of the liquid, the density of the liquid and the thermal
diffusivity of the liquid at the bulk liquid temperature. Using the reduced order gas pressure law for the partial pressure

of the noncondensible gas, the spherical dynamics of the bubble can be characterized by the Keller-Miksis equation
which takes the normalized form
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where the variable cavitation number o, the variable Reynolds number Re and the variable Weber number We are
defined by

_ p(; - p\;,sat , Re — pIIOU(’)RO’ , and We — IDI'OU(;2 R(; (13)
3P 5 H S’
with S' denoting the surface tension, u's denoting the liquid dynamic viscosity (both to be evaluated at the bubble wall
temperature), U'g =R'o/@' denoting a characteristic speed and with subscript 0 denoting the initial value of the variable
properties. The Mach number is given by M=U's/ ¢'p with c'yp denoting the speed of sound in the liquid, and the
pressure coefficient entering the normalized Keller-Miksis equation (12) is defined as
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where p'a(?) is the deriving acoustic pressure. Equations (10) and (12) form the basic equations of the proposed
acoustic cavitation model using the novel reduced order gas pressure law. For the numerical solution of the initial
value problem of the Keller-Miksis equation (12) for spherical bubble dynamics, we use the Runge-Kutta-Fehler
method with adaptive time step size together with the Plesset-Zwick solution (10) for the bubble wall temperature
evaluated by Simpson’s 3/8-numerical integration scheme iteratively. We now apply the proposed acoustic cavitation
model to water-vapor/air bubbles in water. We choose two different acoustic deriving pressure signals with pressure
coefficients given by [10,16]

C,(t)- -0.25{140{@}} . 0<t<500 (15)
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29

20z IMdy €2 uo 3senb Aq ypd° U0 | 58198/866228¢/HPd-191dey0/4000/Wod"JIeydIsA|is opawse//:dRy Wwoy papeojumoq



10th International Symposium on Cavitation - CAV2018 CAV18-05007
Baltimore, Maryland, USA, May 14 — 16, 2018

and
t-130
435

2
Cp (t)=-0.662 exp —( ) ;0 0<t<300. (16)

The bulk water temperature is chosen to be To"=20°C. In this case the saturated vapor pressure is p'vo=0.0234 bar, the
surface tension is So’=0.071 N/m and the dynamic viscosity of water is u'« =103 kg/m-s at the bulk liquid temperature.
For the acoustic driving pressure signal [16] given by eq. (15) , the initial cavitation number is ¢ = 0.492, the initial
bubble radius is Ro’=100 um and the characteristic time corresponding to the acoustic deriving pressure is taken as
©’= 107 s which yield an initial Reynolds number Re=1000 and an initial Weber number We=137. Figures 1(a) and
(1b) show, respectively, the variations of the normalized bubble radius and of the normalized bubble wall temperature
with time for different values of the parameter f (f=0.5, 1.0 and 10.0) using the present acoustic cavitation model.
The time variation of the bubble radius shows reduction in the bubble oscillation amplitudes as the parameter f
increases from 0.5 to 10.0 exhibiting typical behavior from near-isothermal case (low Peclet number) to near-adiabatic
case (high Peclet number). The bubble wall temperature variations also show reduction in magnitude as the parameter
increases from 0.5 to 10.0. For the acoustic driving pressure signal [10] given by eq. (16) , the initial cavitation number
is = 0.654, the initial bubble radius is Ro’=100 um and the characteristic time corresponding to the acoustic deriving
pressure is taken as @ = 2.3 X 10 s which yield an initial Reynolds number Re=695 and an initial Weber number
We=167. Figures 2(a) and (2b) show, respectively, the variations of the normalized bubble radius and of the
normalized bubble wall temperature with time for different values of the parameter f (f = 0.5, 1.0 and 10.0) for this
case using the present acoustic cavitation model. Similar behavior in the reduction of the bubble oscillation amplitudes
and in the bubble wall temperature is observed as the parameter f increases from 0.5 to 10.0. In particular, the results
for f =0.5 are in agreement with those given by Preston et al. [10] using their reduced order constant transfer model
without mass diffusion where they employ the Rayleigh-Plesset equation instead of the Keller-Miksis equation.
Finally, under the same conditions of Figure 2, we investigate the effect of variable fluid properties using the proposed
acoustic cavitation model. Figures 3(a) and 3(b) show, respectively, the variations of the normalized bubble radius
and of the normalized bubble wall temperature with time for variable fluid properties. Considerable reductions in both
buble oscillatiion amplitudes and in bubble wall temperatures are observed as compared to the case of constant fluid
properties. Moreover, a fast relaxation to equilibrium of the bubble radius and of the bubble wall temperature is
observed depending on the value of the parameter f .
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Figure 1: The temporal evolution of (a) the normalized bubble radius, (b) the normalized bubble wall temperature, driven by the acoustic pressure
given by eq. (15) for an air-water vapor bubble in water with ¢ =0.492, We=137, Re=1000 for different values of f (0.5, 1.0 and 10.0) obtained
by the proposed acoustic cavitation model using constant fluid properties.
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Figure 2: The temporal evolution of (a) the normalized bubble radius, (b) the normalized bubble wall temperature, driven by the acoustic pressure
given by eq. (16) for an air-water vapor bubble in water with ¢ =0.654, We=167, Re=695 for different values of f (0.5, 1.0 and 10.0) obtained by
the proposed acoustic cavitation model using constant fluid properties.
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Figure 3: The temporal evolution of (a) the normalized bubble radius, (b) the normalized bubble wall temperature, driven by the acoustic pressure
given by eq. (16) for an air-water vapor bubble in water with initial values 6 = 0.654, We=167, Re=695 for different values of f (0.5, 1.0 and
10.0) obtained by the proposed acoustic cavitation model using variable fluid properties.

Conclusion

The thermal behavior of gas and gas/vapor bubbles is investigated by considering th energy balance between a single
spherical bubble and the surrounding liquid, neglecting the effect of gas diffusion to the liquid. For gas bubbles we
solve the well-known coupled differential equations for the gas pressure and temperature inside the bubble in the
uniform pressure approximation by using an iterative technique for approximating the second order radial derivative
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of the temperature at the bubble wall. In this way we obtain a novel reduced order gas pressure law which exhibits
power law dependence on the bubble wall temperature and bubble radius, with the polytropic index depending on the
isentropic exponent of the gas and on a parameter, which is a function of the Peclet number and of the characteristic
time scale. Moreover, it is shown that this parameter is an increasing function of the Peclet number where the reduced
order gas pressure law reduces to the classical isothermal law when this parameter takes the value 1/2 and to the
classical adiabatic law when this parameter tends to infinity. The bubble wall temperature entering this reduced order
gas pressure law is obtained from the Plesset-Zwick solution of the temperature distribution of the liquid side in the
thin boundary layer approximation. Using this reduced order gas pressure law, a reduced order acoustic cavitation
model for noncondensable gas/vapor bubbles that couples spherical bubble dynamics by the Keller-Miksis equation
to the Plesset-Zwick equation is constructed by accounting for phase change, but neglecting the mass diffusion of the
noncondensable gas. Results obtained for acoustically driven air/water vapor cavitation bubbles using two different
acoustic pressure signals and variable fluid properties show reasonable agreement with the reduced order model of
Preston et al. [10] for a suitable value of the parameter. It remains to correlate the model parameter with Peclet number
and characteristic time scale (driving frequency) using the results of the DNS of the original PDEs over a wide range
of Peclet numbers and driving frequencies.
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