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In the temperature field (figure 2(b)-(d)), a slight temperature change of ±1.8 K is observed with high temperature 
gradients along the liquid/vapor interfaces and the frontal side of cavities. This small variation significantly 
influences the evolution of the vapor cavities. As vapor spots are generated and grow, the latent heat of vaporization 
is absorbed from the surrounding liquid causing a temperature drop around the vapor area. Because of the direct 
connection between temperature and saturation pressure, the drop in temperature decreases the saturation pressure, 
resulting in an overall delay in the inception and growth rate of the vapor spots [4,10]. This behavior diminishes at 
higher cavitation numbers, as shown in figure 2(c)-(d), which yields smaller vapor cavities. This suggests that 
reducing the cavitation number enhances the growth of vapor cavities by increasing the amplification rate of shear-
layer instability [3,4,14]. Such a behavior is illustrated in figure 3 by plotting the temporal variation of vapor 
fraction field at a point 1 mm downstream of the splitter plate (x = 1 mm, y = 0 mm) for cavitation numbers of 𝜎𝜎 = 
0.21 and 0.65. As seen, successive vaporization and collapsing of cavities at lower cavitation number adds 
additional unsteadiness to the flow and thus fluctuations in the local temperature. The vapor cavities are more 
strongly affected by temperature variations at lower cavitation numbers. Evaluation of the compressible vorticity 
transport equation (not shown) indicates that baroclinic vorticity production terms, introduced as a result of 
temperature dependence of the density field, enhances vorticity production at phase interfaces, leading to higher 
amplification rates of shear-layer instability of these cavities [4,10]. 

Conclusion 
A cryogenic cavitation solver is used to simulate a cavitating mixing layer of LNG behind a flat splitter plate, aimed 
at identifying the interaction of shear layer instabilities and phase change in cryogenic fluids. The growth of 
unsteady cavitation is linked to coherent vortices generated following the roll-up of the shear layer past the splitter 
plate. For small cavitation numbers, vapor cavities nucleate at the center of the coherent vortices and evolve into 
large-scale cavity clouds through vortex pairing due to secondary shear layer instabilities. Non-isothermal effects 
modify the growth of vapor cavities by influencing the shear-layer instability process through introducing baroclinic 
vorticity generation mechanisms.  

References 
[1] Wang, G., Ostoja-Starzewski, M. (2007). Large Eddy Simulation of a Sheet/Cloud Cavitation on a NACA0015 Hydrofoil. 
Applied Mathematical Modeling. 31. 
[2] Zhang, X. B., Qiu, L. M., Gao, Y., Zhang, X. J. (2008). Computational Fluid Dynamic Study on Cavitation in Liquid 
Nitrogen. Cryogenics. 48.  
[3] Aeschlimann, V., Barre, S., Djeridi, H. (2011). Velocity Field Analysis in an Experimental Cavitating Mixing Layer. Physics 
of Fluids. 23. 055105. 
[4] Franc, J. P., Michel, J. M. (2005). Fundamentals of Cavitation, in: Fluid Mechanics and Its Applications Series (76), 
Grenoble Sciences: Kluwer Academic Publishers. 
[5] Niiyama, K., Hasegawa, S., Tsuda, S., et al. (2009). Thermodynamic Effects on Cryogenic Cavitating Flow in an Orifice. 
Proceedings of the 7th International Symposium on Cavitation (CAV2009). 
[6] Hosangadi, A., Ahuja, V. (2005). Numerical Study of Cavitation in Cryogenic Fluids. Journal of Fluids Engineering. 127.  
[7] Hassan, W., Legoupil, S., Chambellan, D., Barre, S. (2008). Dynamic Localization of Vapor Fraction in Turbopump Inducers 
by X-ray Tomography. IEEE Transactions on Nuclear Science. 55(1).  
[8] Laberteaux, K. R., Ceccio, S. L. (2001). Partial Cavity Flows. Part 1: Cavities Forming on Models without Spanwise 
Variation. Journal of Fluid Mechanics. 431(1).  
[9] Iyer, C. O., Ceccio, S. L., Prosperetti, A. (2002). The Influence of Developed Cavitation on the Flow of a Turbulent Shear 
Layer. Physics of Fluids. 14. 3414. 
[10] Rahbarimanesh, S., Brinkerhoff, J., Huang, J. (2017 - in press). Development and Validation of a Homogeneous Flow Model 
for Simulating Cavitation in Cryogenic Fluids. Applied Mathematical Modeling. https://doi.org/10.1016/j.apm.2017.12.004. 
[11] Lasheras, J. C., Cho, J. S., Maxworthy, T. (1986). On the Origin and Evolution of Streamwise Vortical Structures in a Plane, 
Free Shear Layer. Journal of Fluid Mechanics. 172.  
[12] Brinkerhoff, J. R., Yaras, M. I. (2014). Numerical Investigation of the Generation and Growth of Coherent Flow Structures 
in a Triggered Turbulent Spot. Journal of Fluid Mechanics. 759.  
[13] Bernal, L., Roshko, A. (1986). Streamwise Vortex Structure in Plane Mixing Layers. Journal of Fluid Mechanics. 170.  
[14] Belahadji, B., Franc, J. P., Michel, J. M. (1995). Cavitation in the Rotational Structures of a Turbulent Wake. Journal of 
Fluid Mechanics. 287.  

10th International Symposium on Cavitation - CAV2018 
Baltimore, Maryland, USA, May 14 – 16, 2018

CAV18-05005 

 

A Parametric Study of Bubble Cloud Dynamics near a Wall in an Acoustic Field 
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Abstract  
A parametric study is conducted to investigate bubble cloud dynamics near a rigid wall when excited 
by a sinusoidal pressure field. It is shown that a preferred driving frequency which can incur the 
strongest collective bubble behavior and result in the highest pressure impact on the nearby wall 
exists for a given bubble cloud initial condition. Such preferred driving frequency is strongly 
dependent on the driving amplitude but independent on the initial ambient pressure. The preferred 
driving frequency decrease as the driving amplitude is increased and approaches the natural 
frequency of bubble cloud predicted by linear theory when the driving amplitude is very small.    

Keywords: Cloud Cavitation, Bubble Dynamics, Multiphase Flow 

Introduction  
The collapse of a cloud of microbubbles near a rigid boundary is known to be as one of the most destructive 

forms of cavitation due collective bubble dynamics resulting in high pressure generation during successive collapses 
and rebounds. Cloud cavitation can be observed in hydrodynamic applications such as on rotating propellers or 
hydrofoils[1]–[5] as well as in high intensity acoustic fields such as in ultrasonic devices, Shock Wave Lithotripsy 
(SWL) for kidney stone fragmentation [6] and High Intensity Focused Ultrasound (HIFU) for tumor ablation [7]. 
Our previous studies [3], [4] have shown that the bubbles in the cloud, collapse in a cascading fashion with the 
bubbles farthest from the wall and cloud center collapsing first and those closest to the wall and center collapsing 
last. This results in a pressure wave moving inward and toward the wall. In order to contribute to the understanding 
of the physics involved in the complex interaction between the many bubbles and the imposed pressure field, and to 
predict the loading on a nearby object, we have applied our coupled Eulerian-Lagrangian two-phase flow modeling 
[8], [9] to an initially spherical bubble cloud to study the effects of the excitation amplitude and frequency. The 
advantage of the Eulerian-Lagrangian numerical approach is that it is a multiscale approach and captures key 
characteristics of both the bubbles’ dynamics and the overall cloud dynamics. It also enables one to account for the 
often-neglected slip velocity between the bubbles and the liquid, which results in micro-streaming with the bubbles 
migrating significantly when the driving pressure amplitude is increased. In [9] we  also considered the effects of the 
initial bubble radii, the bubble distribution, and the cloud distance from the wall and found that the strongest 
collective bubble behavior occurs at a preferred driving frequency for a given initial cloud condition. At this 
preferred driving frequency, pressure peaks orders of magnitudes higher than the excitation pressure, result from 
bubble interaction. However, our previous studies mainly focused on a high ambient pressure. In this study we will 
study the effect of the ambient pressure on the bubble cloud dynamics. In addition, the driving pressure amplitude 
and frequency are varied for different ambient pressures to investigate their effects on the bubble cloud dynamics 
and the resulting pressure at the wall as the bubble cloud collapses.   

Numerical Method  
The two-phase mixture in the bubble cloud is treated as a continuum with the continuity and momentum 

equations expressed as follows:    

  20, ,m
m m m

D p
t Dt


  


     


uu u                      (1) 

where m, m, u, and p are respectively the mixture density, dynamic viscosity, velocity, and pressure. m and m are 
related to the liquid and gas properties and to the gas volume fraction, ,  by: 

    1 , 1 .m l g m l g                  (2) 
Eq. (1) is coupled with equations describing the dynamics of the discrete individual bubbles in the cloud. 

Knowing at each instant all bubble radii and locations provides  (thus m and m) as a function of space and time 
and substitutes for the need of a mixture equation of state to close the system of equations. Each bubble is treated as 
a source, which represents volume change, and a dipole to represent translation. For each bubble, the equivalent 
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spherical radius, R(t), is obtained using a modified Keller-Herring equation [5], which accounts for the mixture 
compressibility and non-uniform pressure field: 
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where cm is the local sound speed in the mixture, pv is the liquid vapor pressure, pg is the bubble gas pressure, and    
is the surface tension. The term us

2/4, accounts for the pressure resulting from the slip velocity, us=uencub, between 
the host medium velocity, uenc, and the bubble velocity, ub , with [6].  penc and uenc are the encountered pressures and 
velocities averaged over the bubble surface to account for local non-uniform flow. The bubble trajectory is obtained 
using the following equation of motion [7]: 
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where CL is a lift coefficient, ω  is the local vorticity, and CD is a drag coefficient. The last term is the Bjerknes 
force due to coupling between bubble volume rate and bubble motion. 

Numerical Simulations and Discussion 

We consider an initially spherical bubble cloud with a radius, A0, (Fig. 1), 
driven by a sinusoidal pressure,    = 1 sin (2 ) ,0P t P   f t   where P0 is the 
initial and average ambient pressure, =Pamp/ P0 is the normalized pressure 
oscillation amplitude, and  f  is the frequency. The cloud center is initially at a 
distance X0 from a rigid wall and is composed of small bubbles of initial radii R0. 
The bubbles are randomly distributed within A0, resulting in a quasi-uniform 
initial α0 within the cloud and all bubbles are initially at equilibrium with the 
pressure P0. We can identify in this problem two groups of parameters: one for 
the imposed pressure field (driving pressure and frequency) and one for the 
bubble cloud characteristics (cloud and bubble sizes and the void fraction). 

Fig. 2 shows an example time sequence of the bubble cloud response during 
the first cycle of oscillation for A0=X0=1.5 mm, R0 =50 μm, and α0=5%,  driven by the imposed pressure P0 = 1 atm, 
= 0.9 and f = 7kHz. The color contours indicate the pressure inside each bubble and the corresponding pressure 
loading at the wall. It is seen that the bubbles in the cloud grow first then collapse in a cascading fashion starting 
with the bubbles at the cloud top (farthest from the wall) collapsing first, and finally those on the bottom (closest to 
the wall) collapsing last and resulting a high pressure loading at the wall.  

 
Fig. 2: Time sequence of bubble cloud behaviors and pressure contours shown on the surface of bubbles and nearby wall for a bubble cloud with 

the initial conditions, R0 =50 μm, α0=5%,  and A0=X0=1.5 mm, driven by a sinusoidal pressure field with P0=1 atm, =0.9, and f=7 kHz.  

Our previous studies [8], [9] have shown that for a given bubble cloud initial geometric condition, the pressure 
loading at the wall when the bubble cloud collapses is highly dependent on the driving pressure amplitude and 
frequency. A preferred driving frequency was found to result in a maximum pressure loading for a given . However, 
the previous studies focused on a high initial pressure, P0 = 10 atm, and thus it would be interesting to investigate if 
the same trend exists for different initial pressures.  

To start with, Fig. 3 compares the effect of the driving frequency on the pressure loading at the wall centre when 
P0 = 1 atm (which is a more practical case for ultrasonic applications than the previously studied P0 = 10 atm) and 
=0.9. It is seen that the highest collective effects appear here close to 7 kHz. This is compared with the results of   

Fig. 1: Schematic of the problem 
of the dynamics of a bubble cloud 

near a rigid wall. 
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P0 = 10 atm as shown in Fig. 4. It can be seen that only a small shift in the peak driving frequency (7 kHz vs. 8 kHz) 
can be observed between these two initial ambient pressures even though the resulting maximum collapse pressure 
is more than five times higher for P0 = 10 atm. This implies that the preferred driving frequency may be little 
dependent on the initial ambient pressure. We are considering next a larger range of pressure changes to understand 
this behaviour.  

Fig. 3: Pressure versus time at the wall center created by bubble 
clouds for different driving frequency for P0 =1 atm, =0.9,  

R0 =50μm, α0=5%, and A0 =X0=1.5 mm. 

Fig. 4: Effect of initial ambient pressure on Pmax1 vs f, for =0.9,  
R0 =50μm, α0=5%, and A0 =X0=1.5 mm. 

Fig. 5 shows for the same driving frequency, f = 8 kHz, how the peak pressure,  Pmax1, varies with P0 . It is seen 
that the maximum pressure loading at the wall increases as the initial ambient pressure is increased indicating 
stronger bubble collapses at the higher pressures. This, however, reaches a plateau at the largest initial ambient 
pressures considered. 

Fig. 5: Effect of initial ambient pressure on the maximum pressure 
loading at the wall center for f=8kHz, =0.9, R0 =50μm, α0=5%, and  

A0 =X0=1.5 mm  

Fig. 6: Pressure versus time at the wall center created by bubble clouds 
for different driving frequency for P0 =1 atm, =1.25,  

R0 =50μm, α0=5%, and A0 =X0=1.5 mm. 

Another set of cases at P0 = 1 atm and =1.25 is simulated and compared to =0.9 for different acoustic driving 
frequencies, to examine the effect of the driving amplitude, , on the peak amplitude at the wall. It is seen from Fig. 
7 that the preferred driving frequency, fmax , is about 4 kHz for =1.25, while it was 8 kHz for =0.9. This indicates a 
strong influence of . The effects of the driving amplitude on Pmax1 vs f is also seen in Fig. 7  It can be seen that the 
peak value of the pressure at the wall, Pmax1, increases and fmax decreases as   is increased. It is important to note 
that the preferred driving frequency, fmax, highlighted here is different from the natural frequency of a bubble cloud 
derived from linear bubble dynamics theory by  [10]: 
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which gives a value of fcloud = 23 kHz for the current case. Further expanding the range of   will allow one to 
investigate such dependency. Fig. 8 shows the dependency of fmax on .  It can be seen that when   is less than 0.2, 
fmax is compatible with fcloud. For   > 0.2,  fmax deviates significantly from fcloud. fmax decreases almost linearly with 
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spherical radius, R(t), is obtained using a modified Keller-Herring equation [5], which accounts for the mixture 
compressibility and non-uniform pressure field: 
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where cm is the local sound speed in the mixture, pv is the liquid vapor pressure, pg is the bubble gas pressure, and    
is the surface tension. The term us

2/4, accounts for the pressure resulting from the slip velocity, us=uencub, between 
the host medium velocity, uenc, and the bubble velocity, ub , with [6].  penc and uenc are the encountered pressures and 
velocities averaged over the bubble surface to account for local non-uniform flow. The bubble trajectory is obtained 
using the following equation of motion [7]: 
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where CL is a lift coefficient, ω  is the local vorticity, and CD is a drag coefficient. The last term is the Bjerknes 
force due to coupling between bubble volume rate and bubble motion. 

Numerical Simulations and Discussion 

We consider an initially spherical bubble cloud with a radius, A0, (Fig. 1), 
driven by a sinusoidal pressure,    = 1 sin (2 ) ,0P t P   f t   where P0 is the 
initial and average ambient pressure, =Pamp/ P0 is the normalized pressure 
oscillation amplitude, and  f  is the frequency. The cloud center is initially at a 
distance X0 from a rigid wall and is composed of small bubbles of initial radii R0. 
The bubbles are randomly distributed within A0, resulting in a quasi-uniform 
initial α0 within the cloud and all bubbles are initially at equilibrium with the 
pressure P0. We can identify in this problem two groups of parameters: one for 
the imposed pressure field (driving pressure and frequency) and one for the 
bubble cloud characteristics (cloud and bubble sizes and the void fraction). 

Fig. 2 shows an example time sequence of the bubble cloud response during 
the first cycle of oscillation for A0=X0=1.5 mm, R0 =50 μm, and α0=5%,  driven by the imposed pressure P0 = 1 atm, 
= 0.9 and f = 7kHz. The color contours indicate the pressure inside each bubble and the corresponding pressure 
loading at the wall. It is seen that the bubbles in the cloud grow first then collapse in a cascading fashion starting 
with the bubbles at the cloud top (farthest from the wall) collapsing first, and finally those on the bottom (closest to 
the wall) collapsing last and resulting a high pressure loading at the wall.  

 
Fig. 2: Time sequence of bubble cloud behaviors and pressure contours shown on the surface of bubbles and nearby wall for a bubble cloud with 

the initial conditions, R0 =50 μm, α0=5%,  and A0=X0=1.5 mm, driven by a sinusoidal pressure field with P0=1 atm, =0.9, and f=7 kHz.  

Our previous studies [8], [9] have shown that for a given bubble cloud initial geometric condition, the pressure 
loading at the wall when the bubble cloud collapses is highly dependent on the driving pressure amplitude and 
frequency. A preferred driving frequency was found to result in a maximum pressure loading for a given . However, 
the previous studies focused on a high initial pressure, P0 = 10 atm, and thus it would be interesting to investigate if 
the same trend exists for different initial pressures.  

To start with, Fig. 3 compares the effect of the driving frequency on the pressure loading at the wall centre when 
P0 = 1 atm (which is a more practical case for ultrasonic applications than the previously studied P0 = 10 atm) and 
=0.9. It is seen that the highest collective effects appear here close to 7 kHz. This is compared with the results of   

Fig. 1: Schematic of the problem 
of the dynamics of a bubble cloud 

near a rigid wall. 
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P0 = 10 atm as shown in Fig. 4. It can be seen that only a small shift in the peak driving frequency (7 kHz vs. 8 kHz) 
can be observed between these two initial ambient pressures even though the resulting maximum collapse pressure 
is more than five times higher for P0 = 10 atm. This implies that the preferred driving frequency may be little 
dependent on the initial ambient pressure. We are considering next a larger range of pressure changes to understand 
this behaviour.  

Fig. 3: Pressure versus time at the wall center created by bubble 
clouds for different driving frequency for P0 =1 atm, =0.9,  

R0 =50μm, α0=5%, and A0 =X0=1.5 mm. 

Fig. 4: Effect of initial ambient pressure on Pmax1 vs f, for =0.9,  
R0 =50μm, α0=5%, and A0 =X0=1.5 mm. 

Fig. 5 shows for the same driving frequency, f = 8 kHz, how the peak pressure,  Pmax1, varies with P0 . It is seen 
that the maximum pressure loading at the wall increases as the initial ambient pressure is increased indicating 
stronger bubble collapses at the higher pressures. This, however, reaches a plateau at the largest initial ambient 
pressures considered. 

Fig. 5: Effect of initial ambient pressure on the maximum pressure 
loading at the wall center for f=8kHz, =0.9, R0 =50μm, α0=5%, and  

A0 =X0=1.5 mm  

Fig. 6: Pressure versus time at the wall center created by bubble clouds 
for different driving frequency for P0 =1 atm, =1.25,  

R0 =50μm, α0=5%, and A0 =X0=1.5 mm. 

Another set of cases at P0 = 1 atm and =1.25 is simulated and compared to =0.9 for different acoustic driving 
frequencies, to examine the effect of the driving amplitude, , on the peak amplitude at the wall. It is seen from Fig. 
7 that the preferred driving frequency, fmax , is about 4 kHz for =1.25, while it was 8 kHz for =0.9. This indicates a 
strong influence of . The effects of the driving amplitude on Pmax1 vs f is also seen in Fig. 7  It can be seen that the 
peak value of the pressure at the wall, Pmax1, increases and fmax decreases as   is increased. It is important to note 
that the preferred driving frequency, fmax, highlighted here is different from the natural frequency of a bubble cloud 
derived from linear bubble dynamics theory by  [10]: 
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which gives a value of fcloud = 23 kHz for the current case. Further expanding the range of   will allow one to 
investigate such dependency. Fig. 8 shows the dependency of fmax on .  It can be seen that when   is less than 0.2, 
fmax is compatible with fcloud. For   > 0.2,  fmax deviates significantly from fcloud. fmax decreases almost linearly with 
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increasing   until  >1 where the fmax seems to reach a plateau. A plausible explanation for this saturation is the 
appearance of inertial cavitation  for  >1 ,where the bubble expansion and collapse a re  controlled by inertia 
of the fluid [11].  
 

  
Fig. 7: Effect of driving pressure amplitude on Pmax1 vs f, for  

P0 =1 atm, R0 =50μm, α0=5%, and A0 =X0=1.5 mm 
Fig. 8: driving frequency, for different relative driving pressure 
amplitudes, b) bubble cloud resonance frequency versus ξ, for  

P0 =1 atm, R0 =50μm, α0=5%, and A0 =X0=1.5 mm. 

Conclusions 
The dynamics of a bubble cloud subjected to a sinusoidal pressure field near a rigid wall is numerically studied 

using an Eulerian/Lagrangian two-phase flow model. Very strong pressures are generated at the wall during the 
cloud collapse at a resonance driving frequency. The study shows that the magnitude of pressure at the wall highly 
depends on the ambient pressure but not the resonance frequency. The study also shows that both the magnitude of 
the pressure and the resonance frequency are strongly dependent on the amplitude of the driving pressure. The 
magnitude of the pressure increases as the driving pressure is increased. The resonance frequency decreases as the 
driving amplitude is increased and approaches the natural frequency of the bubble cloud at small amplitude 
oscillations.    
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A Reduced Order Gas Pressure Law for Single Acoustic Cavitation Bubbles  
1Can F. Delale*; 2Şenay Pasinlioğlu 

1MEF University, Istanbul, Turkey; 2Istanbul Technical University, Istanbul, Turkey  

Abstract  
An acoustic cavitation model for noncondensable gas/vapor bubbles  that couples spherical bubble 
dynamics by the Keller-Miksis equation to the Plesset-Zwick equation is constructed by accounting for 
phase change, but neglecting the mass diffusion of the noncondensable gas. Results obtained for 
acoustically driven air/water-vapor cavitation bubbles using two different acoustic pressure signals and 
variable fluid properties show  reasonable agreement with the reduced order model of Preston et al.  

Keywords: acoustic cavitation, reduced order gas pressure law, bubble dynamics. 

Introduction                                                                                                                                                                                                                     
Acoustic cavitation has aplications in sonochemistry [1], sonoluminescence [2,3] and medical ultasound [4,5] where 
bubbles of a few microns size grow and collapse to sizes that vary by orders of magnitude, especially at ultrasonic 
frequencies. In this case the pressure and temperature inside the bubble can show variations by orders of magnitude. 
Many complex acoustic cavitation models are constructed [6-12] for the numerical simulation of the temperature and 
pressure distributions under acoustically driven frequencies. However, when the complexity of the models and the 
computational time required  for their simulation are taken into account, the need for simplified expressions for the 
gas pressure and temperature inside the bubble is obvious. This need becomes more important in hydrodynamic 
cavitation.  In this investigation the heat conduction through the bubble is considered by the solution of Prosperetti’s 
equation [8]  in the uniform pressure approximation by a novel iterative method [13].  This iterative method leads to 
the desired reduced order gas pressure law exhibiting power law dependence on the bubble wall temperature and 
bubble radius, with the polytropic index depending on the isentropic exponent of the gas and on a parameter which is 
a function of the Peclet number. Moreover, it is shown that this reduced order gas pressure law reduces to the classical 
isothermal and adiabatic laws in the appropriate limits of the parameter. The bubble wall temperature entering this 
reduced order gas pressure law is obtained from the Plesset-Zwick solution [14]. Using this reduced order gas pressure 
law, an acoustic cavitation model for noncondensable gas/vapor bubbles  that couples spherical bubble dynamics by 
the Keller-Miksis equation to the Plesset-Zwick equation is constructed by accounting for phase change, but neglecting 
the mass diffusion of the noncondensable gas. Results obtained for acoustically driven air/water-vapor cavitation 
bubbles using two different acoustic pressure signals and variable fluid properties show  reasonable agreement with 
the reduced order model of Preston et al. [10] for a suitable value of the parameter. 

An Acoustic Cavitation Model Using  A Novel Reduced Order Gas Pressure Law                                                                 
We consider the thermal behavior of  a single spherical gas bubble surrounded by a liquid in the uniform pressure 
appproximation. The temperature distribution inside the bubble is then given by the Prosperetti equation [8, 13,15]  
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where T is the temperature within the bubble, p is the uniform gas pressure inside the bubble, R is the instantaneous 
bubble radius, λ(T) is the temperature dependent thermal conductivity of the gas, γ is the isentropic exponent of the 
gas, y is the normalized radial coordinate normalized and t is the time, all normalized with respect to some reference 
quantities [15]. In eq. (1)  the Peclet number Pe is defined by  

                                                                                                                                                                                      (2)   
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