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Abstract

A parametric study is conducted to investigate bubble cloud dynamics near a rigid wall when excited
by a sinusoidal pressure field. It is shown that a preferred driving frequency which can incur the
strongest collective bubble behavior and result in the highest pressure impact on the nearby wall
exists for a given bubble cloud initial condition. Such preferred driving frequency is strongly
dependent on the driving amplitude but independent on the initial ambient pressure. The preferred
driving frequency decrease as the driving amplitude is increased and approaches the natural
frequency of bubble cloud predicted by linear theory when the driving amplitude is very small.
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Introduction

The collapse of a cloud of microbubbles near a rigid boundary is known to be as one of the most destructive
forms of cavitation due collective bubble dynamics resulting in high pressure generation during successive collapses
and rebounds. Cloud cavitation can be observed in hydrodynamic applications such as on rotating propellers or
hydrofoils[1]-[5] as well as in high intensity acoustic fields such as in ultrasonic devices, Shock Wave Lithotripsy
(SWL) for kidney stone fragmentation [6] and High Intensity Focused Ultrasound (HIFU) for tumor ablation [7].
Our previous studies [3], [4] have shown that the bubbles in the cloud, collapse in a cascading fashion with the
bubbles farthest from the wall and cloud center collapsing first and those closest to the wall and center collapsing
last. This results in a pressure wave moving inward and toward the wall. In order to contribute to the understanding
of the physics involved in the complex interaction between the many bubbles and the imposed pressure field, and to
predict the loading on a nearby object, we have applied our coupled Eulerian-Lagrangian two-phase flow modeling
[8], [9] to an initially spherical bubble cloud to study the effects of the excitation amplitude and frequency. The
advantage of the Eulerian-Lagrangian numerical approach is that it is a multiscale approach and captures key
characteristics of both the bubbles’ dynamics and the overall cloud dynamics. It also enables one to account for the
often-neglected slip velocity between the bubbles and the liquid, which results in micro-streaming with the bubbles
migrating significantly when the driving pressure amplitude is increased. In [9] we also considered the effects of the
initial bubble radii, the bubble distribution, and the cloud distance from the wall and found that the strongest
collective bubble behavior occurs at a preferred driving frequency for a given initial cloud condition. At this
preferred driving frequency, pressure peaks orders of magnitudes higher than the excitation pressure, result from
bubble interaction. However, our previous studies mainly focused on a high ambient pressure. In this study we will
study the effect of the ambient pressure on the bubble cloud dynamics. In addition, the driving pressure amplitude
and frequency are varied for different ambient pressures to investigate their effects on the bubble cloud dynamics
and the resulting pressure at the wall as the bubble cloud collapses.

Numerical Method
The two-phase mixture in the bubble cloud is treated as a continuum with the continuity and momentum
equations expressed as follows:
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where pn, t4n, U, and p are respectively the mixture density, dynamic viscosity, velocity, and pressure. p, and g, are
related to the liquid and gas properties and to the gas volume fraction, ¢, by:

p, =(1-a)p +ap,, t, =(1=0) g +ap, . )

Eq. (1) is coupled with equations describing the dynamics of the discrete individual bubbles in the cloud.
Knowing at each instant all bubble radii and locations provides « (thus p,, and 4,) as a function of space and time
and substitutes for the need of a mixture equation of state to close the system of equations. Each bubble is treated as
a source, which represents volume change, and a dipole to represent translation. For each bubble, the equivalent
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spherical radius, R(?), is obtained using a modified Keller-Herring equation [5], which accounts for the mixture
compressibility and non-uniform pressure field:

R) . 3 R . u 1 R Rd 2y R
l-— |[RR+=(1-—)R=—+—|l+—+—— || p+p, —p. ————4u —|, (3
( . ] 5 3cm) 1 pm( P dt}{pv Py~ Poe = 44, R} )

where ¢, is the local sound speed in the mixture, p, is the liquid vapor pressure, p, is the bubble gas pressure, and
is the surface tension. The term u?/4, accounts for the pressure resulting from the slip velocity, us=u...—us, between
the host medium velocity, ue,, and the bubble velocity, u, , with [6]. pesc and ue,. are the encountered pressures and
velocities averaged over the bubble surface to account for local non-uniform flow. The bubble trajectory is obtained
using the following equation of motion [7]:
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where C; is a lift coefficient, @ is the local vorticity, and Cp is a drag coefficient. The last term is the Bjerknes
force due to coupling between bubble volume rate and bubble motion.

Numerical Simulations and Discussion

We consider an initially spherical bubble cloud with a radius, 4y, (Fig. 1),
driven by a sinusoidal pressure, P (t)=E] [l—ésin Qrf t)], where Py is the
initial and average ambient pressure, =P,/ Py is the normalized pressure
oscillation amplitude, and f is the frequency. The cloud center is initially at a
distance Xy from a rigid wall and is composed of small bubbles of initial radii R,.
The bubbles are randomly distributed within Ay, resulting in a quasi-uniform
initial ay within the cloud and all bubbles are initially at equilibrium with the
pressure Py. We can identify in.tl.lis problem two groups of parameters: one for Fig. 1: Schematic of the problem
the imposed pressure field (driving pressure and frequency) and one for the of the dynamics of a bubble cloud
bubble cloud characteristics (cloud and bubble sizes and the void fraction). near a rigid wall.

Fig. 2 shows an example time sequence of the bubble cloud response during
the first cycle of oscillation for 49=Xy=1.5 mm, Ry=50 um, and ay=5%, driven by the imposed pressure Py =1 atm,
¢= 0.9 and f'= 7kHz. The color contours indicate the pressure inside each bubble and the corresponding pressure
loading at the wall. It is seen that the bubbles in the cloud grow first then collapse in a cascading fashion starting
with the bubbles at the cloud top (farthest from the wall) collapsing first, and finally those on the bottom (closest to
the wall) collapsing last and resulting a high pressure loading at the wall.

Fig. 2: Time sequence of bubble cloud behaviors and pressure contours shown on the surface of bubbles and nearby wall for a bl;lbbl; cloud with
the initial conditions, Ry=50 um, 0,=5%, and 4,=X;,=1.5 mm, driven by a sinusoidal pressure field with P;=1 atm, £=0.9, and /=7 kHz.

Our previous studies [8], [9] have shown that for a given bubble cloud initial geometric condition, the pressure
loading at the wall when the bubble cloud collapses is highly dependent on the driving pressure amplitude and
frequency. A preferred driving frequency was found to result in a maximum pressure loading for a given . However,
the previous studies focused on a high initial pressure, Py = 10 atm, and thus it would be interesting to investigate if
the same trend exists for different initial pressures.

To start with, Fig. 3 compares the effect of the driving frequency on the pressure loading at the wall centre when
Py =1 atm (which is a more practical case for ultrasonic applications than the previously studied Py = 10 atm) and
¢=0.9. It is seen that the highest collective effects appear here close to 7 kHz. This is compared with the results of
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Py =10 atm as shown in Fig. 4. It can be seen that only a small shift in the peak driving frequency (7 kHz vs. 8 kHz)
can be observed between these two initial ambient pressures even though the resulting maximum collapse pressure
is more than five times higher for Py = 10 atm. This implies that the preferred driving frequency may be little
dependent on the initial ambient pressure. We are considering next a larger range of pressure changes to understand
this behaviour.
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Fig. 3: Pressure versus time at the wall center created by bubble Fig. 4: Effect of initial ambient pressure on Puax1 vs f; for £=0.9,
clouds for different driving frequency for Py=1 atm, ¢=0.9, Ry=50pm, a=5%, and Ap=X;=1.5 mm.

RU :SOum, (10:5%, and A() :)(():1.5 mm.

Fig. 5 shows for the same driving frequency, f'= 8 kHz, how the peak pressure, Pmaxi, varies with Py . It is seen
that the maximum pressure loading at the wall increases as the initial ambient pressure is increased indicating
stronger bubble collapses at the higher pressures. This, however, reaches a plateau at the largest initial ambient
pressures considered.
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Fig. 5: Effect of initial ambient pressure on the maximum pressure Fig. 6: Pressure versus time at the wall center created by bubble clouds
loading at the wall center for f/=8kHz, ¢=0.9, Ry=50um, 0,=5%, and for different driving frequency for Py=1 atm, ¢=1.25,
Ap=X,~1.5 mm Ry=50pm, a;=5%, and 49=X;=1.5 mm.

Another set of cases at Pp =1 atm and ¢=1.25 is simulated and compared to ¢=0.9 for different acoustic driving
frequencies, to examine the effect of the driving amplitude, £, on the peak amplitude at the wall. It is seen from Fig.
7 that the preferred driving frequency, fmax , is about 4 kHz for ¢=1.25, while it was 8 kHz for ¢=0.9. This indicates a
strong influence of & The effects of the driving amplitude on Puaxi vs f'is also seen in Fig. 7 It can be seen that the
peak value of the pressure at the wall, Pmaxi, increases and f,..x decreases as ¢ 1is increased. It is important to note
that the preferred driving frequency, fuax, highlighted here is different from the natural frequency of a bubble cloud
derived from linear bubble dynamics theory by [10]:

_1
b YH
o = fo[n—ziiJ with f, =2

7 R 1-q, ©)

which gives a value of fu.u« = 23 kHz for the current case. Further expanding the range of ¢ will allow one to
investigate such dependency. Fig. 8 shows the dependency of f..x on £ It can be seen that when ¢ is less than 0.2,
Jmax 1s compatible with feioua. For & > 0.2, fuax deviates significantly from fejoua. fmax decreases almost linearly with
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increasing & until & >1 where the f..x seems to reach a plateau. A plausible explanation for this saturation is the

appearance of inertial cavitation for & >1 ,where the bubble expansion and collapse are controlled by inertia
of the fluid [11].
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Fig. 7: Effect of driving pressure amplitude on Py, vs f, for Fig. 8: driving frequency, for different relative driving pressure
Py=1 atm, Ry=50um, a;=5%, and 4p=X=1.5 mm amplitudes, b) bubble cloud resonance frequency versus &, for

Py=1 atm, Ry=50um, 0,=5%, and 4=X;=1.5 mm.
Conclusions

The dynamics of a bubble cloud subjected to a sinusoidal pressure field near a rigid wall is numerically studied
using an Eulerian/Lagrangian two-phase flow model. Very strong pressures are generated at the wall during the
cloud collapse at a resonance driving frequency. The study shows that the magnitude of pressure at the wall highly
depends on the ambient pressure but not the resonance frequency. The study also shows that both the magnitude of
the pressure and the resonance frequency are strongly dependent on the amplitude of the driving pressure. The
magnitude of the pressure increases as the driving pressure is increased. The resonance frequency decreases as the
driving amplitude is increased and approaches the natural frequency of the bubble cloud at small amplitude
oscillations.
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