Abstract

A new approach to scaled experimentation has recently appeared in the open literature where hitherto unknown similitude rules have been discovered. The impact of this discovery on biomechanics is the focus of this paper, where rules for one and two scaled experiments are assessed. Biomechanical experimentation is beset by problems that can hinder its successful implementation. Availability of resources, repeatability and variability of specimens, ethical compliance and cost are the most prominent. Physical modeling involving synthetic composite materials can be used to advantage and circumvent ethical concerns but is presently impeded by cost and the limited scope of standardized geometries. The increased flexibility of the new approach, combined with the application of substantially cheaper three-dimensional printed materials, is investigated here for bone biomechanical experiments consisting of mechanical tests for the validation of finite element models by means of digital image correlation. The microstructure of the scaled materials is analyzed using a laser confocal microscope followed by the construction and validation of numerical models by means of a Bland–Altman statistical analysis. Good agreement is obtained demonstrated with means under 18 microstrains (μϵ) and limits of agreement below 83 μϵ. Consequently, numerical results for the new similitude approach shows an average percentage error of 3.1% and 4.8% for the optimized results across all values. The two-scaled experiment approach results in a sevenfold improvement for the average difference values of strain when compared to the single-scaled experiment, so demonstrating the potential of the new approach.

References

1.
Leondes
,
C. T.
,
2009
,
Biomechanical Systems Technology: Muscular Skeletal Systems
,
World Scientific Publishing
Company, Singapore.10.1142/6506-vol3
2.
Altman
,
D. G.
, and
Bland
,
J. M.
,
1983
, “
Measurement in Medicine: The Analysis of Method Comparison Studies
,”
Statistician
,
32
(
3
), pp.
307
317
.10.2307/2987937
3.
Dragomir-Daescu
,
D.
,
Rezaei
,
A.
,
Uthamaraj
,
S.
,
Rossman
,
T.
,
Bronk
,
J. T.
,
Bolander
,
M.
,
Lambert
,
V.
,
McEligot
,
S.
,
Entwistle
,
R.
,
Giambini
,
H.
,
Jasiuk
,
I.
,
Yaszemski
,
M. J.
, and
Lu
,
L.
,
2017
, “
Proximal Cadaveric Femur Preparation for Fracture Strength Testing and Quantitative CT-Based Finite Element Analysis
,”
J. Visual. Exp.
, (
121
), p. 54925.10.3791/54925
4.
Ghosh
,
R.
,
Gupta
,
S.
,
Dickinson
,
A.
, and
Browne
,
M.
,
2012
, “
Experimental Validation of Finite Element Models of Intact and Implanted Composite Hemipelvises Using Digital Image Correlation
,”
ASME J. Biomech. Eng.
,
134
(
8
), p.
081003
.10.1115/1.4007173
5.
Brown
,
J. H.
, and
West
,
G. B.
,
2000
,
Scaling in Biology
,
Oxford University Press
, New York.
6.
Biewener
,
A. A.
,
2005
, “
Biomechanical Consequences of Scaling
,”
J. Exp. Biol.
,
208
(
9
), pp.
1665
1676
.10.1242/jeb.01520
7.
Miller
,
D. C.
,
1973
, “
Growth in Uca, 1. Ontogeny of Asymmetry in Uca Pugilator (Bosc) (Decapoda, Ocypodidae)
,”
Crustaceana
,
24
(
1
), pp.
119
131
.10.1163/156854073X00128
8.
Maier
,
R. M.
,
2009
, “
Bacterial Growth
,”
Environmental Microbiology
, 2nd ed.,
Academic Press
,
San Diego
, CA, pp.
37
54
.
9.
van den Berg
,
R. A.
,
Hoefsloot
,
H. C.
,
Westerhuis
,
J. A.
,
Smilde
,
A. K.
, and
van der Werf
,
M. J.
,
2006
, “
Centering, Scaling and Transformations: Improving the Biological Information Content of Metabolomics Data
,”
BMC Genomics
,
7
, p. 142.10.1186/1471-2164-7-142
10.
Barenblatt
,
G. I.
,
1996
,
Scaling, Self-Similarity, and Intermediate Asymptotics
,
Cambridge University Press
, Cambridge, UK.10.1017/CBO9781107050242
11.
Bridgman
,
P. W.
,
1922
,
Dimensional Analysis
,
Yale University Press
, New Haven, CT.
12.
Davey
,
K.
,
Sadeghi
,
H.
,
Darvizeh
,
R.
,
Golbaf
,
A.
, and
Darvizeh
,
A.
,
2021
, “
A Finite Similitude Approach to Scaled Impact Mechanics
,”
Int. J. Impact Eng.
,
148
, p.
103744
.10.1016/j.ijimpeng.2020.103744
13.
Davey
,
K.
,
Darvizeh
,
R.
, and
Al-Tamimi
,
A.
,
2017
, “
Scaled Metal Forming Experiments: A Transport Equation Approach
,”
Int. J. Solids Struct.
,
125
, pp.
184
205
.10.1016/j.ijsolstr.2017.07.006
14.
Davey
,
K.
,
Darvizeh
,
R.
, and
Atar
,
M.
,
2021
, “
A First Order Finite Similitude Approach to Scaled Aseismic Structures
,”
Eng. Struct.
,
231
, p.
111739
.10.1016/j.engstruct.2020.111739
15.
Ochoa-Cabrero
,
R.
,
Alonso-Rasgado
,
T.
, and
Davey
,
K.
,
2020
, “
Zeroth-Order Finite Similitude and Scaling of Complex Geometries in Biomechanical Experimentation
,”
J. R. Soc. Interface
,
17
(
167
), p.
20190806
.10.1098/rsif.2019.0806
16.
Ochoa-Cabrero
,
R.
,
Alonso-Rasgado
,
T.
, and
Davey
,
K.
,
2018
, “
Scaling in Biomechanical Experimentation: A Finite Similitude Approach
,”
J. R. Soc. Interface
,
15
(
143
), p.
20180254
.10.1098/rsif.2018.0254
17.
Davey
,
K.
, and
Darvizeh
,
R.
,
2016
, “
Neglected Transport Equations: Extended Rankine-Hugoniot Conditions and j-Integrals for Fracture
,”
Continuum Mech. Thermodyn.
,
28
(
5
), pp.
1525
1552
.10.1007/s00161-016-0493-2
18.
Morgan
,
E. F.
,
Unnikrisnan
,
G. U.
, and
Hussein
,
A. I.
,
2018
, “
Bone Mechanical Properties in Healthy and Diseased States
,”
Annu. Rev. Biomed. Eng.
, (
20
(
1
), pp.
119
143
.10.1146/annurev-bioeng-062117-121139
19.
Sawbones
,
2016
,
Biomechanical Test Materials
,
A Division of Pacific Research Laboratories
,
Malmo, Sweden
.
20.
Gardner
,
M. P.
,
Chong
,
A. C. M.
,
Pollock
,
A. G.
, and
Wooley
,
P. H.
,
2010
, “
Mechanical Evaluation of Large-Size Fourth-Generation Composite Femur and Tibia Models
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
613
620
.10.1007/s10439-009-9887-7
21.
Del-Valle-Mojica
,
J. F.
,
Alonso-Rasgado
,
T.
,
Jimenez-Cruz
,
D.
,
Bailey
,
C. G.
, and
Board
,
T. N.
,
2019
, “
Effect of Femoral Head Size, Subject Weight, and Activity Level on Acetabular Cement Mantle Stress Following Total Hip Arthroplasty
,”
J. Orthop. Res.
,
37
(
8
), pp.
1771
1783
.10.1002/jor.24310
22.
Alonso-Rasgado
,
T.
,
Del-Valle-Mojica
,
J. F.
,
Jimenez-Cruz
,
D.
,
Bailey
,
C. G.
, and
Board
,
T. N.
,
2018
, “
Cement Interface and Bone Stress in Total Hip Arthroplasty: Relationship to Head Size
,”
J. Orthop. Res.
,
36
(
11
), pp.
2966
2977
.10.1002/jor.24052
23.
Dalstra
,
M.
,
Huiskes
,
H.
, and
Erning
,
V. L.
,
1995
, “
Development and Validation of a Three-Dimensional Finite Element Model of the Pelvic Bone
,”
ASME J. Biomech. Eng.
,
117
(
3
), pp.
272
278
.10.1115/1.2794181
24.
Tymrak
,
B.
,
Kreiger
,
M.
, and
Pearce
,
J.
,
2014
, “
Mechanical Properties of Components Fabricated With Open-Source 3-d Printers Under Realistic Environmental Conditions
,”
Mater. Des.
,
58
, pp.
242
246
.10.1016/j.matdes.2014.02.038
25.
Gent
,
A.
,
1958
, “
On the Relation Between Indentation Hardness and Young's Modulus
,”
Rubber Chem. Technol.
,
31
(
4
), pp.
896
906
.10.5254/1.3542351
26.
Bergmann
,
G.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Bender
,
A.
,
Heinlein
,
B.
,
Duda
,
G. N.
,
Heller
,
M. O.
, and
Morlock
,
M. M.
,
2010
, “
Realistic Loads for Testing Hip Implants
,”
Bio-Med. Mater. Eng.
,
20
(
2
), pp.
65
75
.10.3233/BME-2010-0616
27.
International Digital Image Correlation Society
,
2018
,
A Good Practices Guide for Digital Image Correlation
, Jones, E. M. C. and Iadicola, M. A., eds., International Digital Image Correlation Society,
Albuquerque, NM
.https://idics.org/guide/DICGoodPracticesGuide_PrintVersion-V5h-181024.pdf
You do not currently have access to this content.