Abstract

Elevated intraocular pressure (IOP) may cause mechanical injuries to the optic nerve head (ONH) and the peripapillary tissues in glaucoma. Previous studies have reported the mechanical deformation of the ONH and the peripapillary sclera (PPS) at elevated IOP. The deformation of the peripapillary retina (PPR) has not been well-characterized. Here we applied high-frequency ultrasound elastography to map and quantify PPR deformation, and compared PPR, PPS and ONH deformation in the same eye. Whole globe inflation was performed in ten human donor eyes. High-frequency ultrasound scans of the posterior eye were acquired while IOP was raised from 5 to 30 mmHg. A correlation-based ultrasound speckle tracking algorithm was used to compute pressure-induced displacements within the scanned tissue cross sections. Radial, tangential, and shear strains were calculated for the PPR, PPS, and ONH regions. In PPR, shear was significantly larger in magnitude than radial and tangential strains. Strain maps showed localized high shear and high tangential strains in PPR. In comparison to PPS and ONH, PPR had greater shear and a similar level of tangential strain. Surprisingly, PPR radial compression was minimal and significantly smaller than that in PPS. These results provide new insights into PPR deformation in response of IOP elevation, suggesting that shear rather than compression was likely the primary mode of IOP-induced mechanical insult in PPR. High shear, especially localized high shear, may contribute to the mechanical damage of this tissue in glaucoma.

References

1.
Campbell
,
I. C.
,
Coudrillier
,
B.
, and
Ethier
,
C. R.
,
2014
, “
Biomechanics of the Posterior Eye: A Critical Role in Health and Disease
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
21005
.10.1115/1.4026286
2.
Schuman
,
J. S.
,
Hee
,
M. R.
,
Puliafito
,
C. A.
,
Wong
,
C.
,
Pedut Kloizman
,
T.
,
Lin
,
C. P.
,
Hertzmark
,
E.
,
Izatt
,
J. A.
,
Swanson
,
E. A.
, and
Fujimoto
,
J. G.
,
1995
, “
Quantification of Nerve Fiber Layer Thickness in Normal and Glaucomatous Eyes Using Optical Coherence Tomography: A Pilot Study
,”
Arch. Ophthalmol.
,
113
(
5
), p.
586
.10.1001/archopht.1995.01100050054031
3.
Liu
,
L.
,
Jia
,
Y.
,
Takusagawa
,
H. L.
,
Pechauer
,
A. D.
,
Edmunds
,
B.
,
Lombardi
,
L.
,
Davis
,
E.
,
Morrison
,
J. C.
, and
Huang
,
D.
,
2015
, “
Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma
,”
JAMA Ophthalmol.
,
133
(
9
), p.
1045
.10.1001/jamaophthalmol.2015.2225
4.
Wu
,
W.
,
Peters
,
W. H.
, and
Hammer
,
M. E.
,
1987
, “
Basic Mechanical Properties of Retina in Simple Elongation
,”
ASME J. Biomech. Eng.
,
109
(
1
), pp.
65
67
.10.1115/1.3138644
5.
Wollensak
,
G.
, and
Spoerl
,
E.
,
2004
, “
Biomechanical Characteristics of Retina
,”
Retina
,
24
(
6
), pp.
967
970
.10.1097/00006982-200412000-00021
6.
Chen
,
K.
, and
Weiland
,
J. D.
,
2010
, “
Anisotropic and Inhomogeneous Mechanical Characteristics of the Retina
,”
J. Biomech.
,
43
(
7
), pp.
1417
1421
.10.1016/j.jbiomech.2009.09.056
7.
Chen
,
K.
, and
Weiland
,
J. D.
,
2012
, “
Mechanical Characteristics of the Porcine Retina in Low Temperatures
,”
Retina
,
32
(
4
), pp.
844
847
.10.1097/IAE.0b013e318225d0c9
8.
Chen
,
K.
, and
Weiland
,
J. D.
,
2014
, “
Discovery of Retinal Elastin and Its Possible Role in Age-Related Macular Degeneration
,”
Ann. Biomed. Eng.
,
42
(
3
), pp.
678
684
.10.1007/s10439-013-0936-x
9.
Worthington
,
K. S.
,
Wiley
,
L. A.
,
Bartlett
,
A. M.
,
Stone
,
E. M.
,
Mullins
,
R. F.
,
Salem
,
A. K.
,
Guymon
,
C. A.
, and
Tucker
,
B. A.
,
2014
, “
Mechanical Properties of Murine and Porcine Ocular Tissues in Compression
,”
Exp. Eye Res.
,
121
, pp.
194
199
.10.1016/j.exer.2014.02.020
10.
Qu
,
Y.
,
He
,
Y.
,
Saidi
,
A.
,
Xin
,
Y.
,
Zhou
,
Y.
,
Zhu
,
J.
,
Ma
,
T.
,
Silverman
,
R. H.
,
Minckler
,
D. S.
,
Zhou
,
Q.
, and
Chen
,
Z.
,
2018
, “
In Vivo Elasticity Mapping of Posterior Ocular Layers Using Acoustic Radiation Force Optical Coherence Elastography
,”
Investig. Ophthalmol. Visual Sci.
,
59
(
1
), pp.
455
461
.10.1167/IOC’s.17-22971
11.
Tang
,
J.
, and
Liu
,
J.
,
2012
, “
Ultrasonic Measurement of Scleral Cross-Sectional Strains During Elevations of Intraocular Pressure: Method Validation and Initial Results in Posterior Porcine Sclera
,”
ASME J. Biomech. Eng.
,
134
(
9
), p.
091007
.10.1115/1.4007365
12.
Cruz Perez
,
B.
,
Pavlatos
,
E.
,
Morris
,
H. J.
,
Chen
,
H.
,
Pan
,
X.
,
Hart
,
R. T.
, and
Liu
,
J.
,
2016
, “
Mapping 3D Strains With Ultrasound Speckle Tracking: Method Validation and Initial Results in Porcine Scleral Inflation
,”
Ann. Biomed. Eng.
,
44
(
7
), pp.
2302
2312
.10.1007/s10439-015-1506-1
13.
Ma
,
Y.
,
Pavlatos
,
E.
,
Clayson
,
K.
,
Pan
,
X.
,
Kwok
,
S.
,
Sandwisch
,
T.
, and
Liu
,
J.
,
2019
, “
Mechanical Deformation of Human Optic Nerve Head and Peripapillary Tissue in Response to Acute IOP Elevation
,”
Investig. Ophthalmol. Visual Sci.
,
60
(
4
), pp.
913
920
.10.1167/iovs.18-26071
14.
Ma
,
Y.
,
Kwok
,
S.
,
Sun
,
J.
,
Pan
,
X.
,
Pavlatos
,
E.
,
Clayson
,
K.
,
Hazen
,
N.
, and
Liu
,
J.
,
2020
, “
IOP-Induced Regional Displacements in the Optic Nerve Head and Correlation With Peripapillary Sclera Thickness
,”
Exp. Eye Res.
,
200
, p.
108202
.10.1016/j.exer.2020.108202
15.
Pavlatos
,
E.
,
Chen
,
H.
,
Clayson
,
K.
,
Pan
,
X.
, and
Liu
,
J.
,
2018
, “
Imaging Corneal Biomechanical Responses to Ocular Pulse Using High-Frequency Ultrasound
,”
IEEE Trans. Med. Imag.
,
37
(
2
), pp.
663
670
.10.1109/TMI.2017.2775146
16.
Kallel
,
F.
, and
Ophir
,
J.
,
1997
, “
A Least-Squares Strain Estimator for Elastography
,”
Ultrason. Imag.
,
19
(
3
), pp.
195
208
.10.1177/016173469701900303
17.
Myers
,
C. E.
,
Klein
,
B. E. K.
,
Meuer
,
S. M.
,
Swift
,
M. K.
,
Chandler
,
C. S.
,
Huang
,
Y.
,
Gangaputra
,
S.
,
Pak
,
J. W.
,
Danis
,
R. P.
, and
Klein
,
R.
,
2015
, “
Retinal Thickness Measured by Spectral-Domain Optical Coherence Tomography in Eyes Without Retinal Abnormalities: The Beaver Dam Eye Study
,”
Am. J. Ophthalmol.
,
159
(
3
), pp.
445
456.e1
.10.1016/j.ajo.2014.11.025
18.
Vurgese
,
S.
,
Panda-Jonas
,
S.
, and
Jonas
,
J. B.
,
2012
, “
Scleral Thickness in Human Eyes
,”
PLoS ONE
,
7
(
1
), p.
e29692
.10.1371/journal.pone.0029692
19.
Coudrillier
,
B.
,
Tian
,
J.
,
Alexander
,
S.
,
Myers
,
K. M.
,
Quigley
,
H. A.
, and
Nguyen
,
T. D.
,
2012
, “
Biomechanics of the Human Posterior Sclera: Age- and Glaucoma-Related Changes Measured Using Inflation Testing
,”
Investig. Ophthalmol. Visual Sci.
,
53
(
4
), pp.
1714
1728
.10.1167/iovs.11-8009
20.
Alamouti
,
B.
, and
Funk
,
J.
,
2003
, “
Retinal Thickness Decreases With Age: An OCT Study
,”
Br. J. Ophthalmol.
,
87
(
7
), pp.
899
901
.10.1136/bjo.87.7.899
21.
Fortune
,
B.
,
Yang
,
H.
,
Strouthidis
,
N. G.
,
Cull
,
G. A.
,
Grimm
,
J. L.
,
Downs
,
J. C.
, and
Burgoyne
,
C. F.
,
2009
, “
The Effect of Acute Intraocular Pressure Elevation on Peripapillary Retinal Thickness, Retinal Nerve Fiber Layer Thickness, and Retardance
,”
Investig. Ophthalmol. Visual Sci.
,
50
(
10
), pp.
4719
4726
.10.1167/iovs.08-3289
22.
Rada
,
J. A.
,
Achen
,
V. R.
,
Perry
,
C. A.
, and
Fox
,
P. W.
,
1997
, “
Proteoglycans in the Human Sclera. Evidence for the Presence of Aggrecan
,”
Investig. Ophthalmol. Visual Sci.
,
38
(
9
), pp.
1740
1751
.https://pubmed.ncbi.nlm.nih.gov/9286262/#:~:text=Conclusions%3A%20The%20adult%20human%20sclera,and%20condition%20of%20the%20sclera.
23.
Rada
,
J. A.
,
Achen
,
V. R.
,
Penugonda
,
S.
,
Schmidt
,
R. W.
, and
Mount
,
B. A.
,
2000
, “
Proteoglycan Composition in the Human Sclera During Growth and Aging
,”
Investig. Ophthalmol. Visual Sci.
,
41
(
7
), pp.
1639
1648
.https://pubmed.ncbi.nlm.nih.gov/10845580/#:~:text=Results%3A%20Human%20scleral%20proteoglycans%20were,small%20proteoglycans%20biglycan%20and%20decorin
24.
Yanagishita
,
M.
,
1993
, “
Function of Proteoglycans in the Extracellular Matrix
,”
Pathol. Int.
,
43
(
6
), pp.
283
293
.10.1111/j.1440-1827.1993.tb02569.x
25.
Pachenari
,
M.
, and
Hatami-Marbini
,
H.
,
2021
, “
Regional Differences in the Glycosaminoglycan Role in Porcine Scleral Hydration and Mechanical Behavior
,”
Investig. Ophthalmol. Visual Sci.
,
62
(
3
), p.
28
.10.1167/iovs.62.3.28
26.
Franz-Odendaal
,
T. A.
, and
Vickaryous
,
M. K.
,
2006
, “
Skeletal Elements in the Vertebrate Eye and Adnexa: Morphological and Developmental Perspectives
,”
Dev. Dyn.
,
235
(
5
), pp.
1244
1255
.10.1002/dvdy.20718
27.
Sigal
,
I. A.
,
Flanagan
,
J. G.
, and
Ethier
,
C. R.
,
2005
, “
Factors Influencing Optic Nerve Head Biomechanics
,”
Investig. Ophthalmol. Visual Sci.
,
46
(
11
), pp.
4189
4199
.10.1167/iovs.05-0541
28.
Hua
,
Y.
,
Voorhees
,
A. P.
, and
Sigal
,
I. A.
,
2018
, “
Cerebrospinal Fluid Pressure: Revisiting Factors Influencing Optic Nerve Head Biomechanics
,”
Investig. Ophthalmol. Visual Sci.
,
59
(
1
), pp.
154
165
.10.1167/iovs.17-22488
29.
Feola
,
A. J.
,
Myers
,
J. G.
,
Raykin
,
J.
,
Mulugeta
,
L.
,
Nelson
,
E. S.
,
Samuels
,
B. C.
, and
Ethier
,
C. R.
,
2016
, “
Finite Element Modeling of Factors Influencing Optic Nerve Head Deformation Due to Intracranial Pressure
,”
Investig. Ophthalmol. Visual Sci.
,
57
(
4
), pp.
1901
1911
.10.1167/iovs.15-17573
30.
Wang
,
X.
,
Fisher
,
L. K.
,
Milea
,
D.
,
Jonas
,
J. B.
, and
Girard
,
M. J. A.
,
2017
, “
Predictions of Optic Nerve Traction Forces and Peripapillary Tissue Stresses Following Horizontal Eye Movements
,”
Investig. Ophthalmol. Visual Sci.
,
58
(
4
), pp.
2044
2053
.10.1167/iovs.16-21319
31.
Pavlatos
,
E.
,
Perez
,
B. C.
,
Morris
,
H. J.
,
Chen
,
H.
,
Palko
,
J. R.
,
Pan
,
X.
,
Weber
,
P. A.
,
Hart
,
R. T.
, and
Liu
,
J.
,
2016
, “
Three-Dimensional Strains in Human Posterior Sclera Using Ultrasound Speckle Tracking
,”
ASME J. Biomech. Eng.
,
138
(
2
), pp.
2101
2109
.10.1115/1.4032124
32.
Ma
,
Y.
,
Pavlatos
,
E.
,
Clayson
,
K.
,
Kwok
,
S.
,
Pan
,
X.
, and
Liu
,
J.
,
2020
, “
Three-Dimensional Inflation Response of Porcine Optic Nerve Head Using High-Frequency Ultrasound Elastography
,”
ASME J. Biomech. Eng.
,
142
(
5
), pp.
1
7
.10.1115/1.4045503
You do not currently have access to this content.