This study investigates rheological effects of blood on steady flows in a nonplanar distal end-to-side anastomosis. The shear-thinning behavior of blood is depicted by a Carreau–Yasuda model and a modified power-law model. To explore effects of nonplanarity in vessel geometry, a curved bypass graft is considered that connects to the host artery with a 90deg out-of-plane curvature. Navier–Stokes equations are solved using a finite volume method. Velocity and wall shear stress (WSS) are compared between Newtonian and non-Newtonian fluids at different flow rates. At low flow rate, difference in axial velocity profiles between Newtonian and non-Newtonian fluids is significant and secondary flows are weaker for non-Newtonian fluids. At high flow rate, non-Newtonian fluids have bigger peak WSS and WSS gradient. The size of the flow recirculation zone near the toe is smaller for non-Newtonian fluids and the difference is significant at low flow rate. The nonplanar bypass graft introduces helical flow in the host vessel. Results from the study reveal that near the bed, heel, and toe of the anastomotic junction where intimal hyperplasia occurs preferentially, WSS gradients are all very big. At high flow rates, WSS gradients are elevated by the non-Newtonian effect of blood but they are reduced at low flow rates. At these locations, blood rheology not only affects the WSS and its gradient but also secondary flow patterns and the size of flow recirculation near the toe. This study reemphasizes that the rheological property of blood is a key factor in studying hemodynamic effects on vascular diseases.

1.
Caro
,
C. G.
, 1982, “
Arterial Fluid-Mechanics and Atherogenesis
,”
Clin. Hemorheol.
0271-5198,
2
, pp.
131
136
.
2.
Chien
,
S.
, 2003, “
Molecular and Mechanical Bases of Focal Lipid Accumulation in Arterial Wall
,”
Prog. Biophys. Mol. Biol.
0079-6107,
83
, pp.
131
151
.
3.
Ku
,
D. N.
, 1997, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
0066-4189,
29
, pp.
399
434
.
4.
Lowe
,
G. D. O.
, 1986, “
Blood Rheology in Arterial Disease
,”
Clin. Sci.
0323-5084,
71
, pp.
137
146
.
5.
Dilley
,
R. J.
,
McGeachie
,
J. K.
, and
Prendergast
,
F. J.
, 1988, “
A Review of the Histologic Changes in Vein-to-Artery Grafts, With Particular Reference to Intimal Hyperplasia
,”
Arch. Surg. (Chicago)
0004-0010,
123
, pp.
691
696
6.
Bassiouny
,
H. S.
,
White
,
S.
,
Glagov
,
S.
,
Choi
,
E.
,
Giddens
,
D. P.
, and
Zarins
,
C. K.
, 1992, “
Anastomotic Intimal Hyperplasia Mechanical Injury or Flow Induced
,”
J. Vasc. Surg.
0741-5214,
15
, pp.
708
717
.
7.
Chervu
,
A.
, and
Moore
,
M.
, 1990, “
An Overview of Intimal Hyperplasia
,”
Surg. Gynecol. Obstet.
0039-6087,
171
, pp.
433
474
.
8.
Davies
,
P. F.
, 1995, “
Flow Mediated Endothelial Mechanotransduction
,”
Physiol. Rev.
0031-9333,
75
, pp.
519
560
.
9.
Hofer
,
M.
,
Rappitsch
,
G.
,
Perktold
,
K.
,
Tubel
,
W.
, and
Schima
,
H.
, 1996, “
Numerical Study of Wall Mechanics and Fluid Dynamics in End-to-Side Anastomoses and Correlation to Intimal Hyperplasia
,”
J. Biomech.
0021-9290,
29
, pp.
1297
1308
.
10.
Ojha
,
M.
, 1993, “
Spatial and Temporal Variations of Wall Shear Stress Within an End-to-Side Arterial Anastomosis Model
,”
J. Biomech.
0021-9290,
26
, pp.
1377
1388
.
11.
Sottiurai
,
V. S.
,
Yao
,
J. S. T.
,
Batson
,
R. C.
,
Sue
,
S. L.
,
Jones
,
R.
, and
Nakamura
,
Y. A.
, 1989, “
Distal Anastomotic Intimal Hyperplasia: Histopathological Character and Biogenesis
,”
Ann. Vasc. Surg.
0890-5096,
1
, pp.
26
33
.
12.
Cole
,
J. S.
,
Watterson
,
J. K.
, and
O’Reilly
,
M. J. G.
, 2002, “
Numerical Investigation of the Haemodynamics at a Patched Arterial Bypass Anastomosis
,”
Med. Eng. Phys.
1350-4533,
24
, pp.
393
401
.
13.
Ethier
,
C. R.
,
Prakash
,
S.
,
Steinman
,
D. A.
,
Leask
,
R. L.
,
Couch
,
G. G.
, and
Ojha
,
M.
, 2000, “
Steady Flow Separation Patterns in a 45Degree Junction
,”
J. Fluid Mech.
0022-1120,
411
, pp.
1
38
.
14.
Henry
,
F.
,
Collins
,
M.
,
Hughes
,
P.
, and
How
,
T.
, 1996, “
Numerical Investigation of Steady Flow in Proximal and Distal End-to-Side Anastomoses
,”
ASME J. Biomech. Eng.
0148-0731,
118
, pp.
302
310
.
15.
Steinman
,
D. A.
, and
Ethier
,
C. R.
, 1994, “
The Effect of Wall Distensibility on Flow in a Two-Dimensional End-to-Side Anastomosis
,”
ASME J. Biomech. Eng.
0148-0731,
116
, pp.
294
301
.
16.
Steinman
,
D.
,
Frayne
,
R.
,
Zhang
,
X. D.
,
Butt
,
B.
, and
Ethier
,
C.
, 1996, “
MR Measurements and Numerical Simulation of Steady Flow in an End-to-Side Anastomosis Model
,”
J. Biomech.
0021-9290,
29
, pp.
537
542
.
17.
Fei
,
D. Y.
,
Thomas
,
J. D.
, and
Rittgers
,
S. E.
, 1994, “
The Effect of Angle and Flow Rate Upon Hemodynamics in Distal Vascular Graft Anastomoses: A Numerical Model Study
,”
ASME J. Biomech. Eng.
0148-0731,
116
, pp.
331
336
.
18.
Lei
,
M.
,
Kleinstreuer
,
C.
, and
Archie
,
J. P.
, 1997, “
Hemodynamic Simulations and Computer-Aided Designs of Graft-Artery Junctions
,”
ASME J. Biomech. Eng.
0148-0731,
119
, pp.
343
348
.
19.
White
,
S. S.
,
Zarins
,
C. K.
,
Giddens
,
D. P.
,
Bassiouny
,
H.
,
Loth
,
F.
,
Jones
,
S. A.
, and
Glagov
,
S.
, 1993, “
Hemodynamic Patterns in two Models of End-to-Side Vascular Graft Anastomoses: Effects of Pulsatility, Flow Division, Reynolds number, and Hood Length
,”
ASME J. Biomech. Eng.
0148-0731,
115
, pp.
104
111
.
20.
Caro
,
C. G.
,
Doorly
,
D. J.
,
Tarnawski
,
M.
,
Scott
,
K. T.
,
Long
,
Q.
, and
Dumoulin
,
C. L.
, 1996, “
Non-Planar Curvature and Branching of Arteries and Non-Planar-Type Flow.
,”
Proc. R. Soc. London, Ser. B
0962-8452,
452
, pp.
185
197
.
21.
Lu
,
Y. L.
,
Zhuang
,
L. X.
, and
Wang
,
W.
, 2002, “
Breaking Symmetry in Non-Planar Bifurcations: Distribution of Flow and Wall Shear Stress
,”
Biorheology
0006-355X,
39
, pp.
431
436
.
22.
Sherwin
,
S. J.
,
Shah
,
O.
,
Doorly
,
D. J.
,
Peiro
,
J.
,
Papaharilaou
,
Y.
,
Watkins
,
N.
,
Caro
,
C. G.
, and
Dumoulin
,
C. L.
, 2000, “
The Influence of Out-of-Plane Geometry on the Flow Within a Distal End-to-Side Anastomosis
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
86
97
.
23.
Luo
,
X. Y.
, and
Kuang
,
Z. B.
, 1992, “
A Study on the Constitutive Equation of Blood
,”
J. Biomech.
0021-9290,
25
, pp.
929
934
.
24.
Rand
,
P. W.
,
Lacombe
,
E.
,
Hunt
,
H. E.
, and
Austin
,
W. H.
, 1964, “
Viscosity of Normal Human Blood Under Normothermic and Hypothermic Conditions
,”
J. Appl. Physiol.
0021-8987,
19
, pp.
117
122
.
25.
Walburn
,
F. J.
, and
Schneck
,
D. J.
, 1976, “
A Constitutive Equation for Whole Human Blood
,”
Biorheology
0006-355X,
13
, pp.
201
210
.
26.
Gijsen
,
F. J. H.
,
van deVosse
,
F. N.
, and
Janssen
,
J. D.
, 1999, “
The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Steady Flow in Carotid Bifurcation Model
,”
J. Biomech.
0021-9290,
32
, pp.
601
608
.
27.
Shibeshi
,
S. S.
, and
Collins
,
W. E.
, 2005, “
The Rheology of Blood Flow in a Branched Arterial System
,”
Appl. Rheol.
1430-6395,
15
, pp.
398
405
.
28.
Neofytou
,
P.
, and
Tsangaris
,
S.
, 2006, “
Flow Effects of Blood Constitutive Equations in 3D Models of Vascular Anomalies
,”
Int. J. Numer. Methods Fluids
0271-2091,
51
, pp.
489
510
.
29.
Lee
,
S. W.
, and
Steinman
,
D. A.
, 2007, “
On the Relative Importance of Rheology for Image-Based CFD Models of the Carotid Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
273
278
.
30.
Chen
,
J.
,
Lu
,
X. Y.
, and
Wang
,
W.
, 2006, “
Non-Newtonian Effect of Blood Flow on Hemodynamics in Distal Vascular Graft Anastomoses
,”
J. Biomech.
0021-9290,
39
, pp.
1983
1995
.
31.
Wang
,
Q. Q.
, 2007, “
Rheological Effects of the Blood on Pulsatile Flows in Non-Planar Distal End-to-Side Anastomoses
,” Ph. D. Thesis, Queen Mary, University of London, London.
32.
Cho
,
Y. I.
, and
Kensey
,
K. R.
, 1991, “
Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel. Part I: Steady Flows
,”
Biorheology
0006-355X,
28
, pp.
241
262
.
33.
Biro
,
G. P.
, 1982, “
Comparison of Acute Cardiovascular Effects and Oxygen-Supply Following Haemodilution With Dextran, Stroma-Free Haemoglobin Solution and Fluorocarbon Suspension
,”
Cardiovasc. Res.
0008-6363,
16
, pp.
194
204
.
34.
Patankar
,
S. V.
, and
Spalding
,
D. B.
, 1972, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
1787
1800
.
35.
Bovendeerd
,
P. H. M.
,
Van Steenhoven
,
A. A.
,
Van Vosse
,
F. N.
, and
Vossers
,
G.
, 1987, “
Steady Entry Flow in a Curved Pipe
,”
J. Fluid Mech.
0022-1120,
177
, pp.
233
246
.
36.
Rindt
,
C. C. M.
,
Van Steenhoven
,
A. A.
,
Janssen
,
J. D.
, and
Vossers
,
G.
, 1991, “
Unsteady Entrance Flow in a 90° Curved Tube
,”
J. Fluid Mech.
0022-1120,
226
, pp.
445
474
.
37.
Kao
,
H.
, 1987, “
Torsion Effects on Fully Developed Flow in a Helical Pipe
,”
J. Fluid Mech.
0022-1120,
184
, pp.
335
356
.
38.
Tuttle
,
E.
, 1990, “
Laminar Flow in Twisted Pipe
,”
J. Fluid Mech.
0022-1120,
219
, pp.
545
570
.
You do not currently have access to this content.