Because of the heterogeneous nature of articular cartilage tissue, penetration of potential therapeutic molecules for osteoarthritis (OA) through the articular surface (AS) is complex, with many factors that affect transport of these solutes within the tissue. Therefore, the goal of this study is to investigate how the size of antibody (Ab) variants, as well as application of cyclic mechanical loading, affects solute transport within healthy cartilage tissue. Penetration of fluorescently tagged solutes was quantified using confocal microscopy. For all the solutes tested, fluorescence curves were obtained through the articular surface. On average, diffusivities for the solutes of sizes 200 kDa, 150 kDa, 50 kDa, and 25 kDa were 3.3, 3.4, 5.1, and 6.0 μm2/s from 0 to 100 μm from the articular surface. Diffusivities went up to a maximum of 16.5, 18.5, 20.5, and 23.4 μm2/s for the 200 kDa, 150 kDa, 50 kDa, and 25 kDa molecules, respectively, from 225 to 325 μm from the surface. Overall, the effect of loading was very significant, with maximal transport enhancement for each solute ranging from 2.2 to 3.4-fold near 275 μm. Ultimately, solutes of this size do not diffuse uniformly nor are convected uniformly, through the depth of the cartilage tissue. This research potentially holds great clinical significance to discover ways of further optimizing transport into cartilage and leads to effective antibody-based treatments for OA.

References

1.
Fernandes
,
J. C.
,
Martel-Pelletier
,
J.
, and
Pelletier
,
J.-P.
,
2002
, “
The Role of Cytokines in Osteoarthritis Pathophysiology
,”
Biorheology
,
39
(
1–2
), pp.
237
246
.http://content.iospress.com/articles/biorheology/bir151
2.
Bang
,
L. M.
, and
Keating
,
G. M.
,
2004
, “
A Review of Its Use in Rheumatoid Arthritis
,”
Biodrugs
,
18
(
2
), pp.
121
139
.
3.
Nestorov
,
I.
,
2005
, “
Clinical Pharmacokinetics of TNF Antagonists: How Do They Differ?
,”
Semin. Arthritis Rheum.
,
34
(
Suppl. 1
), pp.
12
18
.
4.
Feldmann
,
M.
, and
Maini
,
R. N.
,
2001
, “
Anti-TNFα Therapy of Rheumatoid Arthritis: What Have We Learned?
,”
Annu. Rev. Immunol.
,
19
(
1
), pp.
163
196
.
5.
Goldring
,
M. B.
,
2001
, “
Anticytokine Therapy for Osteoarthritis
,”
Expert Opin. Biol. Ther.
,
1
(
5
), pp.
817
829
.
6.
Allen
,
K. D.
,
Adams
,
S. B.
, and
Setton
,
L. A.
,
2010
, “
Evaluating Intra-Articular Drug Delivery for the Treatment of Osteoarthritis in a Rat Model
,”
Tissue Eng. Part B.
,
16
(
1
), pp.
81
92
.
7.
Moos
,
V.
,
Fickert
,
S.
,
Müller
,
B.
,
Weber
,
U.
, and
Sieper
,
J.
,
1999
, “
Immunohistological Analysis of Cytokine Expression in Human Osteoarthritic and Healthy Cartilage
,”
J. Rheumatol.
,
26
(
4
), pp.
870
879
.
8.
Martel-Pelletier
,
J.
,
1998
, “
Pathophysiology of Osteoarthritis
,”
Osteoarthritis Cartilage
,
6
(
6
), pp.
374
376
.
9.
Owen
,
S. G.
,
Francis
,
H. W.
, and
Roberts
,
M. S.
,
1994
, “
Disappearance Kinetics of Solutes From Synovial Fluid After Intra-Articular Injection
,”
Br. J. Clin. Pharmacol.
,
38
(
4
), pp.
349
355
.
10.
Gerwin
,
N.
,
Hops
,
C.
, and
Lucke
,
A.
,
2006
, “
Intraarticular Drug Delivery in Osteoarthritis
,”
Adv. Drug Delivery Rev.
,
58
(
2
), pp.
226
242
.
11.
Mow
,
V. C.
,
Holmes
,
M. H.
, and
Lai
,
W. M.
,
1984
, “
Fluid Transport and Mechanical Properties of Articular Cartilage: A Review
,”
J. Biomech.
,
17
(
5
), pp.
377
394
.
12.
Poole
,
A.
,
Kojima
,
T.
,
Yasuda
,
T.
,
Mwale
,
F.
,
Kobayashi
,
M.
, and
Laverty
,
S.
,
2001
, “
Composition and Structure of Articular Cartilage: A Template for Tissue Repair
,”
Clin. Orthop. Relat. Res.
,
1
(
Suppl. 391
), pp.
S26
S33
.
13.
Maroudas
,
A.
,
1975
, “
Biophysical Chemistry of Cartilaginous Tissues With Special Reference to Solute and Fluid Transport
,”
Biorheology
,
12
(
3–4
), pp.
233
248
.
14.
Maroudas
,
A.
,
Bullough
,
P.
,
Swanson
,
S. A. V.
, and
Freeman
,
R.
,
1968
, “
The Permeability of Articular Cartilage
,”
J. Bone Jt. Surg.
,
50B
(
1
), pp.
166
177
.http://bjj.boneandjoint.org.uk/content/50-B/1/166
15.
Hwang
,
W. S.
,
Li
,
B.
,
Jin
,
L. H.
,
Ngo
,
K.
,
Schachar
,
N. S.
, and
Hughes
,
G. N.
,
1992
, “
Collagen Fibril Structure of Normal, Aging, and Osteoarthritic Cartilage
,”
J. Pathol.
,
167
(
4
), pp.
425
433
.
16.
Maroudas
,
A.
,
1970
, “
Distribution and Diffusion of Solutes in Articular Cartilage
,”
Biophys. J.
,
10
(
5
), pp.
365
379
.
17.
Torzilli
,
P. A.
,
Arduino
,
J. M.
,
Gregory
,
J. D.
, and
Bansal
,
M.
,
1997
, “
Effect of Proteoglycan Removal on Solute Mobility in Articular Cartilage
,”
J. Biomech.
,
30
(
9
), pp.
895
902
.
18.
Zhang
,
L.
, and
Szeri
,
A. Z.
,
2008
, “
Transport of Neutral Solute in Articular Cartilage: Effect of Microstructure Anisotropy
,”
J. Biomech.
,
41
(
2
), pp.
430
437
.
19.
Leddy
,
H. A.
, and
Guilak
,
F.
,
2003
, “
Site-Specific Molecular Diffusion in Articular Cartilage Measured Using Fluorescence Recovery After Photobleaching
,”
Ann. Biomed. Eng.
,
31
(
7
), pp.
753
760
.
20.
Bonassar
,
L. J.
,
Grodzinsky
,
A. J.
,
Frank
,
E. H.
,
Davila
,
S. G.
,
Bhaktav
,
N. R.
, and
Trippel
,
S. B.
,
2001
, “
The Effect of Dynamic Compression on the Response of Articular Cartilage to Insulin-Like Growth Factor-I
,”
J. Orthop. Res.
,
19
(
1
), pp.
11
17
.
21.
Garcia
,
A. M.
,
Lark
,
M. W.
,
Trippel
,
S. B.
, and
Grodzinsky
,
A. J.
,
1998
, “
Transport of Tissue Inhibitor of Metalloproteinases-1 Through Cartilage: Contributions of Fluid Flow and Electrical Migration
,”
J. Orthop. Res.
,
16
(
6
), pp.
734
742
.
22.
Lima
,
E. G.
,
Bian
,
L.
,
Ng
,
K. W.
,
Mauck
,
R. L.
,
Byers
,
B. A.
,
Tuan
,
R. S.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
,
2007
, “
The Beneficial Effect of Delayed Compressive Loading on Tissue-Engineered Cartilage Constructs Cultured With TGF-β3
,”
Osteoarthritis Cartilage
,
15
(
9
), pp.
1025
1033
.
23.
O'Hara
,
B. P.
,
Urban
,
J. P.
, and
Maroudas
,
A.
,
1990
, “
Influence of Cyclic Loading on the Nutrition of Articular Cartilage
,”
Ann. Rheum. Dis.
,
49
(
7
), pp.
536
539
.
24.
DiDomenico
,
C. D.
,
Wang
,
Z. X.
, and
Bonassar
,
L. J.
,
2016
, “
Cyclic Mechanical Loading Enhances Transport of Antibodies Into Articular Cartilage
,”
ASME J. Biomech. Eng.
,
139
(
1
), p.
11012
.
25.
Winalski
,
C. S.
,
Aliabadi
,
P.
,
Wright
,
R. J.
,
Shortkroff
,
S.
,
Sledge
,
C. B.
, and
Weissman
,
B. N.
,
1993
, “
Enhancement of Joint Fluid With Intravenously Administered Gadopentetate Dimeglumine: Technique, Rationale, and Implications
,”
Radiology
,
187
(
1
), pp.
179
185
.
26.
Ballyns
,
J. J.
, and
Bonassar
,
L. J.
,
2011
, “
Dynamic Compressive Loading of Image-Guided Tissue Engineered Meniscal Constructs
,”
J. Biomech.
,
44
(
3
), pp.
509
516
.
27.
Leddy
,
H. A.
,
Haider
,
M. A.
, and
Guilak
,
F.
,
2006
, “
Diffusional Anisotropy in Collagenous Tissues: Fluorescence Imaging of Continuous Point Photobleaching
,”
Biophys. J.
,
91
(
1
), pp.
311
316
.
28.
Carr
,
E. J.
, and
Turner
,
I. W.
,
2016
, “
A Semi-Analytical Solution for Multilayer Diffusion in a Composite Medium Consisting of a Large Number of Layers
,”
Appl. Math. Model.
,
40
(15–16), pp.
1
17
.
29.
Fannjiang
,
A.
, and
Papanicolaou
,
G.
,
1997
, “
Convection-Enhanced Diffusion for Random Flows
,”
J. Stat. Phys.
,
88
(
5–6
), pp.
1033
1076
.
30.
Garcia
,
A. M.
,
Frank
,
E. H.
,
Grimshaw
,
P. E.
, and
Grodzinsky
,
A. J.
,
1996
, “
Contributions of Fluid Convection and Electrical Migration to Transport in Cartilage: Relevance to Loading
,”
Arch. Biochem. Biophys.
,
333
(
2
), pp.
317
325
.
31.
Evans
,
R. C.
, and
Quinn
,
T. M.
,
2006
, “
Solute Convection in Dynamically Compressed Cartilage
,”
J. Biomech.
,
39
(
6
), pp.
1048
1055
.
32.
Eckstein
,
F.
,
Hudelmaier
,
M.
, and
Putz
,
R.
,
2006
, “
The Effects of Exercise on Human Articular Cartilage
,”
J. Anat.
,
208
(
4
), pp.
491
512
.
33.
Maroudas
,
A.
,
1976
, “
Transport of Solutes Through Cartilage: Permeability to Large Molecules
,”
J. Anat.
,
122
(
2
), pp.
335
347
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1231906/
34.
Klein
,
T. J.
,
Chaudhry
,
M.
,
Bae
,
W. C.
, and
Sah
,
R. L.
,
2007
, “
Depth-Dependent Biomechanical and Biochemical Properties of Fetal, Newborn, and Tissue-Engineered Articular Cartilage
,”
J. Biomech.
,
40
(
1
), pp.
182
190
.
35.
Athanasiou
,
K. A.
,
Agarwal
,
A.
,
Muffoletto
,
A.
,
Dzida
,
F. J.
,
Constantinides
,
G.
, and
Clem
,
M.
,
1995
, “
Biomechanical Properties of Hip Cartilage in Experimental Animal Models
,”
Clin. Orthop. Relat. Res.
,
316
, pp.
254
266
.
36.
Athanasiou
,
K. A.
,
Rosenwasser
,
M. P.
,
Buckwalter
,
J. A.
,
Malinin
,
T. I.
, and
Mow
,
V. C.
,
1991
, “
Interspecies Comparisons of In Situ Intrinsic Mechanical Properties of Distal Femoral Cartilage
,”
J. Orthop. Res.
,
9
(
3
), pp.
330
340
.
37.
Silverberg
,
J. L.
,
Barrett
,
A. R.
,
Das
,
M.
,
Petersen
,
P. B.
, and
Bonassar
,
L. J.
,
2014
, “
Article Structure-Function Relations and Rigidity Percolation in the Shear Properties of Articular Cartilage
,”
Biophys. J.
,
107
(
7
), pp.
1721
1730
.
38.
Wilson
,
W.
,
Huyghe
,
J. M.
, and
Van Donkelaar
,
C. C.
,
2007
, “
Depth-Dependent Compressive Equilibrium Properties of Articular Cartilage Explained by Its Composition
,”
Biomech. Model. Mechanobiol.
,
6
(
1–2
), pp.
43
53
.
39.
Sophia Fox
,
A. J.
,
Bedi
,
A.
, and
Rodeo
,
S. A.
,
2009
, “
The Basic Science of Articular Cartilage: Structure, Composition, and Function
,”
Sports Health
,
1
(
6
), pp.
461
468
.
40.
Maroudas
,
A.
,
1968
, “
Physicochemical Properties of Cartilage in the Light of Ion Exchange Theory
,”
Biophys. J.
,
8
(
5
), pp.
575
595
.
41.
Kulmala
,
K. M.
,
Korhonen
,
R. K.
,
Julkunen
,
P.
,
Jurvelin
,
J. S.
,
Quinn
,
T. M.
,
Kröger
,
H.
, and
Töyräs
,
J.
,
2010
, “
Diffusion Coefficients of Articular Cartilage for Different CT and MRI Contrast Agents
,”
Med. Eng. Phys.
,
32
(
8
), pp.
878
882
.
42.
Mauck
,
R. L.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2003
, “
Modeling of Neutral Solute Transport in a Dynamically Loaded Porous Permeable Gel: Implications for Articular Cartilage Biosynthesis and Tissue Engineering
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
602
614
.
43.
Albro
,
M. B.
,
Banerjee
,
R. E.
,
Li
,
R.
,
Oungoulian
,
S. R.
,
Chen
,
B.
,
del Palomar
,
A. P.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2011
, “
Dynamic Loading of Immature Epiphyseal Cartilage Pumps Nutrients Out of Vascular Canals
,”
J. Biomech.
,
44
(
9
), pp.
1654
1659
.
44.
Buschmann
,
M. D.
,
Kim
,
Y. J.
,
Wong
,
M.
,
Frank
,
E.
,
Hunziker
,
E. B.
, and
Grodzinsky
,
A. J.
,
1999
, “
Stimulation of Aggrecan Synthesis in Cartilage Explants by Cyclic Loading Is Localized to Regions of High Interstitial Fluid Flow
,”
Arch. Biochem. Biophys.
,
366
(
1
), pp.
1
7
.
45.
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2013
, “
Finite Element Modeling of Solutes in Hydrated Deformable Biological Tissues
,”
Computer Models in Biomechanics
,
Springer
, Dordrecht, The Netherlands, pp.
231
249
.
46.
Zhang
,
L.
,
Gardiner
,
B. S.
,
Smith
,
D. W.
,
Pivonka
,
P.
, and
Grodzinsky
,
A.
,
2007
, “
The Effect of Cyclic Deformation and Solute Binding on Solute Transport in Cartilage
,”
Arch. Biochem. Biophys.
,
457
(
1
), pp.
47
56
.
47.
Besier
,
T. F.
,
Gold
,
G. E.
, and
Delp
,
S. L.
,
2005
, “
A Modeling Framework to Estimate Patellofemoral Joint Cartilage Stress In Vivo
,”
Med. Sci. Sports Exercise
, pp.
1924
1930
.
48.
Quinn
,
T. M.
,
Kocian
,
P.
, and
Meister
,
J. J.
,
2000
, “
Static Compression Is Associated With Decreased Diffusivity of Dextrans in Cartilage Explants
,”
Arch. Biochem. Biophys.
,
384
(
2
), pp.
327
334
.
49.
Evans
,
R. C.
, and
Quinn
,
T. M.
,
2005
, “
Solute Diffusivity Correlates With Mechanical Properties and Matrix Density of Compressed Articular Cartilage
,”
Arch. Biochem. Biophys.
,
442
(
1
), pp.
1
10
.
50.
Bajpayee
,
A. G.
,
Wong
,
C. R.
,
Bawendi
,
M. G.
,
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
2014
, “
Avidin as a Model for Charge Driven Transport Into Cartilage and Drug Delivery for Treating Early Stage Post-Traumatic Osteoarthritis
,”
Biomaterials
,
35
(
1
), pp.
538
549
.
51.
Hayes
,
W. C.
, and
Mockros
,
L. F.
,
1971
, “
Viscoelastic Properties of Human Articular Cartilage
,”
J. Appl. Physiol.
,
31
(
4
), pp.
562
538
.http://jap.physiology.org/content/31/4/562
You do not currently have access to this content.