Abstract

Active prostheses can provide net positive work to individuals with amputation, offering more versatility across locomotion tasks than passive prostheses. However, the effect of powered joints on bilateral biomechanics has not been widely explored for ambulation modes different than level ground and treadmill walking. In this study, we present the bilateral biomechanics of stair ascent and descent with a powered knee-ankle prosthesis compared to the biomechanical profiles of able-bodied subjects at different configurations of stair height between 102 mm and 178 mm. In addition, we include reference profiles from users with passive prostheses for the nominal stair height of 152 mm to place our findings in relation to the typical solution for individuals with transfemoral amputation (TFA). We report the biomechanical profiles of kinematics, kinetics, and power, together with temporal and waveform symmetry and distribution of mechanical energy across the joints. We found that an active prosthesis provides a substantial contribution to mechanical power during stair ascent and power absorption during stair descent and gait patterns like able-bodied subjects. The active prosthesis enables step-over-step gait in stair ascent. This translates into a lower mechanical energy requirement on the intact side, with a 57% reduction of energy at the knee and 26% at the hip with respect to the passive prosthesis. For stair descent, we found a 28% reduction in the negative work done by the intact ankle. These results reflect the benefit of active prostheses, allowing the users to complete tasks more efficiently than passive legs. However, in comparison to able-bodied biomechanics, the results still differ from the ideal patterns. We discuss the limitations that explain this difference and suggest future directions for the design of impedance controllers by taking inspiration from the biological modulation of the knee moment as a function of the stair height.

References

1.
George
,
J.
,
Navale
,
S.
,
Nageeb
,
E.
,
Curtis
,
G.
,
Klika
,
A.
,
Barsoum
,
W.
,
Mont
,
M.
, and
Higuera
,
C.
,
2018
, “
Etiology of Above-Knee Amputations in the United States: Is Periprosthetic Joint Infection an Emerging Cause?
,”
Clin. Orthop. Relat. Res.
,
476
(
10
), pp.
1951
1960
.10.1007/s11999.0000000000000166
2.
Lechler
,
K.
, and
Krisstjansson
,
K.
,
2018
, “
The Importance of Additional Mid Swing Toe Clearance for Amputees
,”
Can. Prosthet. Orthot. J.
,
1
(
2
), pp.
1
6
.10.33137/cpoj.v1i2.30813
3.
Windrich
,
M.
,
Grimmer
,
M.
,
Christ
,
O.
,
Rinderknecht
,
S.
, and
Beckerle
,
P.
,
2016
, “
Active Lower Limb Prosthetics: A Systematic Review of Design Issues and Solutions
,”
Biomed. Eng. Online
,
15
(
S3
), pp.
5
19
.10.1186/s12938-016-0284-9
4.
Sup
,
F.
,
Bohara
,
A.
, and
Goldfarb
,
M.
,
2008
, “
Design and Control of a Powered Transfemoral Prosthesis
,”
Int. J. Rob. Res.
,
27
(
2
), pp.
263
273
.10.1177/0278364907084588
5.
Varol
,
H. A.
,
Sup
,
F.
, and
Goldfarb
,
M.
,
2010
, “
Multiclass Real-Time Intent Recognition of a Powered Lower Limb Prosthesis
,”
IEEE Trans Biomed. Eng.
,
57
(
3
), pp.
542
551
.10.1109/TBME.2009.2034734
6.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation
,”
1984 American Control Conference
, San Diego, CA, June 6–8, pp.
304
313
.10.23919/ACC.1984.4788393
7.
Simon
,
A. M.
,
Ingraham
,
K. A.
,
Fey
,
N. P.
,
Finucane
,
S. B.
,
Lipschutz
,
R. D.
,
Young
,
A. J.
, and
Hargrove
,
L. J.
,
2014
, “
Configuring a Powered Knee and Ankle Prosthesis for Transfemoral Amputees Within Five Specific Ambulation Modes
,”
PLoS One
,
9
(
6
), p.
e99387
.10.1371/journal.pone.0099387
8.
Bhakta
,
K.
,
Camargo
,
J.
,
Kunapuli
,
P.
,
Childers
,
L.
, and
Young
,
A.
,
2020
, “
Impedance Control Strategies for Enhancing Sloped and Level Walking Capabilities for Individuals With Transfemoral Amputation Using a Powered Multi-Joint Prosthesis
,”
Mil. Med.
,
185
(
Suppl_1
), pp.
490
499
.10.1093/milmed/usz229
9.
Hoover
,
C. D.
,
Fulk
,
G. D.
, and
Fite
,
K. B.
,
2013
, “
Stair Ascent With a Powered Transfemoral Prosthesis Under Direct Myoelectric Control
,”
IEEE/ASME Trans. Mechatron.
,
18
(
3
), pp.
1191
1200
.10.1109/TMECH.2012.2200498
10.
Hobara
,
H.
,
Kobayashi
,
Y.
,
Nakamura
,
T.
,
Yamasaki
,
N.
,
Nakazawa
,
K.
,
Akai
,
M.
, and
Ogata
,
T.
,
2011
, “
Lower Extremity Joint Kinematics of Stair Ascent in Transfemoral Amputees
,”
Prosthet. Orthot. Int.
,
35
(
4
), pp.
467
472
.10.1177/0309364611425564
11.
Schmalz
,
T.
,
Blumentritt
,
S.
, and
Marx
,
B.
,
2007
, “
Biomechanical Analysis of Stair Ambulation in Lower Limb Amputees
,”
Gait Posture
,
25
(
2
), pp.
267
278
.10.1016/j.gaitpost.2006.04.008
12.
Kaufman
,
K.
,
Frittoli
,
S.
, and
Frigo
,
C.
,
2012
, “
Gait Asymmetry of Transfemoral Amputees Using Mechanical and Microprocessor-Controlled Prosthetic Knees
,”
Clin. Biomech.
,
27
(
5
), pp.
460
465
.10.1016/j.clinbiomech.2011.11.011
13.
Wolf
,
E. J.
,
Everding
,
V. Q.
,
Linberg
,
A. L.
,
Schnall
,
B. L.
,
Czerniecki
,
J. M.
, and
Gambel
,
J. M.
,
2012
, “
Assessment of Transfemoral Amputees Using C-Leg and Power Knee for Ascending and Descending Inclines and Steps
,”
J. Rehabil. Res. Dev.
,
49
(
6
), pp.
831
842
.10.1682/JRRD.2010.12.0234
14.
Ledoux
,
E. D.
,
Lawson
,
B. E.
,
Shultz
,
A. H.
,
Bartlett
,
H. L.
, and
Goldfarb
,
M.
,
2015
, “
Metabolics of Stair Ascent With a Powered Transfemoral Prosthesis
,”
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
,
2015
, pp.
5307
5310
.10.1109/EMBC.2015.7319589
15.
Ledoux
,
E. D.
, and
Goldfarb
,
M.
,
2017
, “
Control and Evaluation of a Powered Transfemoral Prosthesis for Stair Ascent
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
7
), pp.
917
924
.10.1109/TNSRE.2017.2656467
16.
Bonnet
,
X.
,
Villa
,
C.
,
Loiret
,
I.
,
Lavaste
,
F.
, and
Pillet
,
H.
,
2021
, “
Distribution of Joint Work During Walking on Slopes Among Persons With Transfemoral Amputation
,”
J. Biomech.
,
129
, p.
110843
.10.1016/j.jbiomech.2021.110843
17.
Gailey
,
R.
,
Allen
,
K.
,
Castles
,
J.
,
Kucharik
,
J.
, and
Roeder
,
M.
,
2008
, “
Review of Secondary Physical Conditions Associated With Lower-Limb Amputation and Long-Term Prosthesis Use
,”
J. Rehabil. Res. Develop.
,
45
(
1
), pp.
15
30
.10.1682/JRRD.2006.11.0147
18.
Jayaraman
,
C.
,
Hoppe-Ludwig
,
S.
,
Deems-Dluhy
,
S.
,
McGuire
,
M.
,
Mummidisetty
,
C.
,
Siegal
,
R.
,
Naef
,
A.
,
Lawson
,
B. E.
,
Goldfarb
,
M.
,
Gordon
,
K. E.
, and
Jayaraman
,
A.
,
2018
, “
Impact of Powered Knee-Ankle Prosthesis on Low Back Muscle Mechanics in Transfemoral Amputees: A Case Series
,”
Front. Neurosci.
,
12
(
134
), pp.
1
13
.10.3389/fnins.2018.00134
19.
Elery
,
T.
,
Rezazadeh
,
S.
,
Reznick
,
E.
,
Gray
,
L.
, and
Gregg
,
R. D.
,
2020
, “
Effects of a Powered Knee-Ankle Prosthesis on Amputee Hip Compensations: A Case Series
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
28
(
12
), pp.
2944
2954
.10.1109/TNSRE.2020.3040260
20.
Parri
,
A.
,
Martini
,
E.
,
Geeroms
,
J.
,
Flynn
,
L.
,
Pasquini
,
G.
,
Crea
,
S.
,
Lova
,
R. M.
,
Lefeber
,
D.
,
Kamnik
,
R.
,
Munih
,
M.
, and
Vitiello
,
N.
,
2017
, “
Whole Body Awareness for Controlling a Robotic Transfemoral Prosthesis
,”
Front. Neurorob.
,
11
, pp.
1
14
.10.3389/fnbot.2017.00025
21.
Highsmith
,
M. J.
,
Kahle
,
J. T.
,
Carey
,
S. L.
,
Lura
,
D. J.
,
Dubey
,
R. V.
, and
Quillen
,
W. S.
,
2010
, “
Kinetic Differences Using a Power Knee and C-Leg While Sitting Down and Standing Up: A Case Report
,”
J. Prosthet. Orthot.
,
22
(
4
), pp.
237
243
.10.1097/JPO.0b013e3181f46b65
22.
Spanias
,
J. A.
,
Simon
,
A. M.
,
Finucane
,
S.
,
Perreault
,
E.
, and
Hargrove
,
L.
,
2017
, “
Online Adaptive Neural Control of a Robotic Lower Limb Prosthesis
,”
J. Neural Eng.
,
2
, pp.
1
2
.10.1088/1741-2552/aa92a8
23.
Bhakta
,
K.
,
Camargo
,
J.
, and
Young
,
A. J.
,
2018
, “
Control and Experimental Validation of a Powered Knee and Ankle Prosthetic Device
,”
ASME
Paper No. DSCC2018-9218.10.1115/DSCC2018-9218
24.
ADA
,
2010
, “
2010 ADA Standards for Accessible Design
,” Department of Justice, Washington, DC, accessed Jan. 3, 2021, http://www.ADA.gov
25.
Camargo
,
J.
,
Ramanathan
,
A.
,
Flanagan
,
W.
, and
Young
,
A.
,
2021
, “
A Comprehensive, Open-Source Dataset of Lower Limb Biomechanics in Multiple Conditions of Stairs, Ramps, and Level-Ground Ambulation and Transitions
,”
J. Biomech.
,
119
, p.
110320
.10.1016/j.jbiomech.2021.110320
26.
Camargo
,
J.
,
Bhakta
,
K.
, and
Young
,
A.
,
2018
, “
Stochastic Optimization of Impedance Parameters for a Powered Prosthesis Using a 3D Simulation Environment
,”
ASME
Paper No. DSCC2018-9206.10.1115/DSCC2018-9206
27.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
,
1990
, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
,
37
(
8
), pp.
757
767
.10.1109/10.102791
28.
LaPrè
,
A. K.
,
Price
,
M. A.
,
Wedge
,
R. D.
,
Umberger
,
B. R.
, and
Sup
,
F. C.
,
2018
, “
Approach for Gait Analysis in Persons With Limb Loss Including Residuum and Prosthesis Socket Dynamics
,”
Int. J. Numer. Method Biomed. Eng.
,
34
(
4
), pp.
1
11
.10.1002/cnm.2936
29.
Camargo
,
J.
,
Ramanathan
,
A.
,
Csomay-Shanklin
,
N.
, and
Young
,
A.
,
2020
, “
Automated Gap-Filling for Marker-Based Biomechanical Motion Capture Data
,”
Comput. Methods Biomech. Biomed. Eng.
,
2020
, pp.
1
10
.10.1080/10255842.2020.1789971
30.
Nolan
,
L.
,
Wit
,
A.
,
Dudziñski
,
K.
,
Lees
,
A.
,
Lake
,
M.
, and
Wychowañski
,
M.
,
2003
, “
Adjustments in Gait Symmetry With Walking Speed in Trans-Femoral and Trans-Tibial Amputees
,”
Gait Posture
,
17
(
2
), pp.
142
151
.10.1016/S0966-6362(02)00066-8
31.
Farris
,
D. J.
, and
Sawicki
,
G. S.
,
2012
, “
The Mechanics and Energetics of Human Walking and Running: A Joint Level Perspective the Mechanics and Energetics of Human Walking and Running: A Joint Level Perspective
,”
J. R. Soc. Interface.
,
9
(
66
), pp.
110
118
.10.1098/rsif.2011.0182
32.
Bae
,
T. S.
,
Choi
,
K.
, and
Mun
,
M.
,
2009
, “
Level Walking and Stair Climbing Gait in Above-Knee Amputees
,”
J. Med. Eng. Technol.
,
33
(
2
), pp.
130
135
.10.1080/03091900701404043
33.
Hak
,
L.
,
Van Dieën
,
J. H.
,
Van Der Wurff
,
P.
, and
Houdijk
,
H.
,
2014
, “
Stepping Asymmetry Among Individuals With Unilateral Transtibial Limb Loss Might Be Functional in Terms of Gait Stability
,”
Phys. Ther.
,
94
(
10
), pp.
1480
1488
.10.2522/ptj.20130431
34.
Norvell
,
D. C.
,
Czerniecki
,
J. M.
,
Reiber
,
G. E.
,
Maynard
,
C.
,
Pecoraro
,
J. A.
, and
Weiss
,
N. S.
,
2005
, “
The Prevalence of Knee Pain and Symptomatic Knee Osteoarthritis Among Veteran Traumatic Amputees and Nonamputees
,”
Arch. Phys. Med. Rehabil.
,
86
(
3
), pp.
487
493
.10.1016/j.apmr.2004.04.034
35.
Struyf
,
P. A.
,
van Heugten
,
C. M.
,
Hitters
,
M. W.
, and
Smeets
,
R. J.
,
2009
, “
The Prevalence of Osteoarthritis of the Intact Hip and Knee Among Traumatic Leg Amputees
,”
Arch. Phys. Med. Rehabil.
,
90
(
3
), pp.
440
446
.10.1016/j.apmr.2008.08.220
36.
Highsmith
,
M. J.
,
Kahle
,
J. T.
,
Lewandowski
,
A. L.
,
Kim
,
S. H.
, and
Mengelkoch
,
L. J.
,
2012
, “
A Method for Training Step-Over-Step Stair Descent Gait With Stance Yielding Prosthetic Knees: A Technical Note
,”
JPO J. Prosthe. Ortho.
, 24, pp.
10
15
.10.1097/JPO.0b013e3182436628
37.
Brandt
,
A.
, and
(Helen) Huang
,
H.
,
2019
, “
Effects of Extended Stance Time on a Powered Knee Prosthesis and Gait Symmetry on the Lateral Control of Balance During Walking in Individuals With Unilateral Amputation
,”
J. Neuroeng. Rehabil.
,
16
(
1
), pp.
1
11
.10.1186/s12984-019-0625-6
38.
Hood
,
S.
,
Gabert
,
L.
, and
Lenzi
,
T.
,
2022
, “
Powered Knee and Ankle Prosthesis With Adaptive Control Enables Climbing Stairs With Different Stair Heights, Cadences, and Gait Patterns
,”
IEEE Trans. Rob.
,
38
(
3
), pp.
1430
1441
.10.1109/TRO.2022.3152134
39.
Cortino
,
R. J.
,
Bolívar-Nieto
,
E.
,
Best
,
T. K.
, and
Gregg
,
R. D.
, “
Stair Ascent Phase-Variable Control of a Powered Knee-Ankle Prosthesis
,” 2022 International Conference on Robotics and Automation (
ICRA
), Philadelphia, PA, May 23–27, pp.
5673
5678
.10.1109/ICRA46639.2022.9811578
40.
Voloshina
,
A. S.
,
Kuo
,
A. D.
,
Daley
,
M. A.
, and
Ferris
,
D. P.
,
2013
, “
Biomechanics and Energetics of Walking on Uneven Terrain
,”
J. Exp. Biol.
,
216
(
21
), pp.
3963
3970
.10.1242/jeb.081711
41.
Li
,
M.
,
Wen
,
Y.
,
Gao
,
X.
,
Si
,
J.
, and
Huang
,
H.
,
2022
, “
Toward Expedited Impedance Tuning of a Robotic Prosthesis for Personalized Gait Assistance by Reinforcement Learning Control
,”
IEEE Trans. Rob.
,
38
(
1
), pp.
407
420
.10.1109/TRO.2021.3078317
42.
Huang
,
H.
,
Crouch
,
D. L.
,
Liu
,
M.
,
Sawicki
,
G. S.
, and
Wang
,
D.
,
2016
, “
A Cyber Expert System for Auto-Tuning Powered Prosthesis Impedance Control Parameters
,”
Ann. Biomed. Eng.
,
44
(
5
), pp.
1613
1624
.10.1007/s10439-015-1464-7
You do not currently have access to this content.