Abstract

The opening of the ion channels ultimately depends on the movement and energy conversion of the microstructural organization. But the role was not yet clear how the active sound amplification function is generated by the microstructure in the cochlear characteristic spiral shape. In this paper, an analytical model of the spiral cochlea is developed to investigate the radial flow field generated by the spiral shape of the cochlea and its effect on the outer hair cell stereocilia, and to analyze the effect of the spiral shape on the micromechanics of the cochlea. The results show that the spiral shape of the cochlea exerts a radial shear force on the hair cell stereocilia by generating a radial flow field, causing the stereocilia to deflect in the radial flow field, with the maximum deflection occurring at the apex of the cochlea. This finding explains from the microscopic mechanism that cochlear spiral shape can enhance low-frequency hearing in humans, which provides a basis for further studies on the contribution of the movement of stereocilia applied by the radial flow field of lymphatic fluid to activate ion channels for auditory production.

References

1.
Jia
,
S.
, and
He
,
D. Z.
,
2005
, “
Motility-Associated Hair-Bundle Motion in Mammalian Outer Hair Cells
,”
Nat. Neurosci.
,
8
(
8
), pp.
1028
1034
.10.1038/nn1509
2.
Hakizimana
,
P.
, and
Fridberger
,
A.
,
2021
, “
Inner Hair Cell Stereocilia Are Embedded in the Tectorial Membrane
,”
Nat. Commun.
,
12
(
1
), p.
2604
.10.1038/s41467-021-22870-1
3.
Caprara
,
G. A.
,
Mecca
,
A. A.
, and
Peng
,
A. W.
,
2020
, “
Decades-Old Model of Slow Adaptation in Sensory Hair Cells is Not Supported in Mammals
,”
Sci. Adv.
,
6
(
33
), p.
eabb4922
.10.1126/sciadv.abb4922
4.
Cohen
,
R.
,
Amir-Zilberstein
,
L.
,
Hersch
,
M.
,
Woland
,
S.
,
Loza
,
O.
,
Taiber
,
S.
,
Matsuzaki
,
F.
,
Bergmann
,
S.
,
Avraham
,
K. B.
, and
Sprinzak
,
D.
,
2020
, “
Mechanical Forces Drive Ordered Patterning of Hair Cells in the Mammalian Inner Ear
,”
Nat. Commun.
,
11
(
1
), p.
5137
.10.1038/s41467-020-18894-8
5.
Huxley
,
A. F.
,
1969
, “
Is Resonance Possible in the Cochlea After All?
,”
Nature
,
221
(
5184
), pp.
935
940
.10.1038/221935a0
6.
Cai
,
H.
,
Manoussaki
,
D.
, and
Chadwick
,
R.
,
2005
, “
Effects of Coiling on the Micromechanics of the Mammalian Cochlea
,”
J. R. Soc. Interface
,
2
(
4
), pp.
341
348
.10.1098/rsif.2005.0049
7.
Manoussaki
,
D.
,
Dimitriadis
,
E. K.
, and
Chadwick
,
R. S.
,
2006
, “
Cochlea's Graded Curvature Effect on Low Frequency Waves
,”
Phys. Rev. Lett.
,
96
(
8
), p.
088701
.10.1103/PhysRevLett.96.088701
8.
von Békésy
,
G.
,
1956
, “
Simplified Model to Demonstrate the Energy Flow and Formation of Traveling Waves Similar to Those Found in the Cochlea
,”
Proc. Natl. Acad. Sci.
,
42
(
12
), pp.
930
944
.10.1073/pnas.42.12.930
9.
Kolston
,
P. J.
,
1999
, “
Comparing In Vitro, in Situ, and in Vivo Experimental Data in a Three-Dimensional Model of Mammalian Cochlear Mechanics
,”
Proc. Natl. Acad. Sci. U. S. A.
,
96
(
7
), pp.
3676
3681
.10.1073/pnas.96.7.3676
10.
Lim
,
K. M.
, and
Steele
,
C. R.
,
2002
, “
A Three-Dimensional Nonlinear Active Cochlear Model Analyzed by the WKB-Numeric Method
,”
Hear. Res.
,
170
(
1–2
), pp.
190
205
.10.1016/S0378-5955(02)00491-4
11.
Gan
,
R. Z.
,
Reeves
,
B. P.
, and
Wang
,
X.
,
2007
, “
Modeling of Sound Transmission From Ear Canal to Cochlea
,”
Ann. Biomed. Eng.
,
35
(
12
), pp.
2180
2195
.10.1007/s10439-007-9366-y
12.
Xu
,
L.
,
Huang
,
X.
,
Ta
,
N.
,
Rao
,
Z.
, and
Tian
,
J.
,
2015
, “
Finite Element Modeling of the Human Cochlea Using Fluid–Structure Interaction Method
,”
J. Mech. Med. Biol.
,
15
(
3
), p.
1550039
.10.1142/S0219519415500396
13.
Manoussaki
,
D.
,
Chadwick
,
R. S.
,
Ketten
,
D. R.
,
Arruda
,
J.
,
Dimitriadis
,
E. K.
, and
O'Malley
,
J. T.
,
2008
, “
The Influence of Cochlear Shape on Low-Frequency Hearing
,”
Proc. Natl. Acad. Sci. U. S. A.
,
105
(
16
), pp.
6162
6166
.10.1073/pnas.0710037105
14.
Zhang
,
X.
, and
Gan
,
R. Z.
,
2011
, “
A Comprehensive Model of Human Ear for Analysis of Implantable Hearing Devices
,”
IEEE Trans. Biomed. Eng.
,
58
(
10
), pp.
3024
3027
.10.1109/TBME.2011.2159714
15.
Ma
,
J.
,
Yao
,
W.
, and
Hu
,
B.
,
2020
, “
Simulation of the Multiphysical Coupling Behavior of Active Hearing Mechanism Within Spiral Cochlea
,”
ASME J. Biomech. Eng.
,
142
(
9
), p.
091005
.10.1115/1.4046204
16.
Yao
,
W.
,
Liang
,
J.
,
Ren
,
L.
,
Ma
,
J.
,
Zhao
,
Z.
,
Wang
,
J.
,
Xie
,
Y.
,
Dai
,
P.
, and
Zhang
,
T.
,
2022
, “
Revealing the Actions of the Human Cochlear Basilar Membrane at Low Frequency
,”
Commun. Nonlinear Sci. Numer. Simul.
,
104
, p.
106043
.10.1016/j.cnsns.2021.106043
17.
Fridberger
,
A.
, and
Monvel
,
J. D.
,
2003
, “
Sound-Induced Differential Motion Within the Hearing Organ
,”
Nat. Neurosci.
,
6
(
5
), pp.
446
448
.10.1038/nn1047
18.
Peng
,
A. W.
,
Salles
,
F. T.
,
Pan
,
B.
, and
Ricci
,
A. J.
,
2011
, “
Integrating the Biophysical and Molecular Mechanisms of Auditory Hair Cell Mechanotransduction
,”
Nat. Commun.
,
2
(
1
), p.
523
.10.1038/ncomms1533
19.
Reichenbach
,
T.
, and
Hudspeth
,
A. J.
,
2014
, “
The Physics of Hearing: Fluid Mechanics and the Active Process of the Inner Ear
,”
Rep. Prog. Phys.
,
77
(
7
), p.
076601
.10.1088/0034-4885/77/7/076601
20.
Fettiplace
,
R.
, and
Kim
,
K. X.
,
2014
, “
The Physiology of Mechanoelectrical Transduction Channels in Hearing
,”
Physiol. Rev.
,
94
(
3
), pp.
951
986
.10.1152/physrev.00038.2013
21.
Fridberger
,
A.
,
Boutet de Monvel
,
J.
, and
Ulfendahl
,
M.
,
2002
, “
Internal Shearing Within the Hearing Organ Evoked by Basilar Membrane Motion
,”
J. Neurosci.
,
22
(
22
), pp.
9850
9857
.10.1523/JNEUROSCI.22-22-09850.2002
22.
Sellon
,
J. B.
,
Azadi
,
M.
,
Oftadeh
,
R.
,
Nia
,
H. T.
,
Ghaffari
,
R.
,
Grodzinsky
,
A. J.
, and
Freeman
,
D. M.
,
2019
, “
Nanoscale Poroelasticity of the Tectorial Membrane Determines Hair Bundle Deflections
,”
Phys. Rev. Lett.
,
122
(
2
), p.
028101
.10.1103/PhysRevLett.122.028101
23.
Furness
,
D. N.
,
Zetes
,
D. E.
,
Hackney
,
C. M.
, and
Steele
,
C. R.
,
1997
, “
Kinematic Analysis of Shear Displacement as a Means for Operating Mechanotransduction Channels in the Contact Region Between Adjacent Stereocilia of Mammalian Cochlear Hair Cells
,”
Proc. R. Soc. B: Biol. Sci.
,
264
(
1378
), pp.
45
51
.10.1098/rspb.1997.0007
24.
Fridberger
,
A.
,
Tomo
,
I.
,
Ulfendahl
,
M.
, and
Monvel
,
J.
,
2006
, “
Imaging Hair Cell Transduction at the Speed of Sound: Dynamic Behavior of Mammalian Stereocilia
,”
Proc. Natl. Acad. Sci. U. S. A.
,
103
(
6
), pp.
1918
1923
.10.1073/pnas.0507231103
25.
Aranyosi
,
A. J.
, and
Freeman
,
D. M.
,
2004
, “
Sound-Induced Motions of Individual Cochlear Hair Bundles
,”
Biophys. J.
,
87
(
5
), pp.
3536
3546
.10.1529/biophysj.104.044404
26.
Zosuls
,
A.
,
Rupprecht
,
L. C.
, and
Mountain
,
D. C.
,
2021
, “
Inner Hair Cell Stereocilia Displacement in Response to Focal Stimulation of the Basilar Membrane in the Ex Vivo Gerbil Cochlea
,”
Hear. Res.
,
412
, p.
108372
.10.1016/j.heares.2021.108372
27.
Holmes
,
M. H.
, and
Cole
,
J. D.
,
1984
, “
Cochlear Mechanics: Analysis for a Pure Tone
,”
J. Acoust. Soc. Am.
,
76
(
3
), pp.
767
778
.10.1121/1.391300
28.
Manoussaki
,
D.
, and
Chadwick
,
R. S.
,
2000
, “
Effects of Geometry on Fluid Loading in a Coiled Cochlea
,”
SIAM J. Appl. Math.
,
61
(
2
), pp.
369
386
.10.1137/S0036139999358404
29.
Steele
,
C. R.
, and
Taber
,
L. A.
,
1979
, “
Comparison of WKB Calculations and Experimental Results for Three-Dimensional Cochlear Models
,”
J. Acoust. Soc. Am.
,
65
(
4
), pp.
1007
1018
.10.1121/1.382570
30.
Morse
,
P. M.
,
Ingard
,
K. U.
, and
Shankland
,
R. S.
,
1969
, “
Theoretical Acoustics
,”
Phys. Today
,
22
(
5
), pp.
98
99
.10.1063/1.3035602
31.
Lesser
,
M. B.
, and
Berkley
,
D. A.
,
1972
, “
Fluid Mechanics of the Cochlea. Part 1
,”
J. Fluid Mech.
,
51
(
3
), pp.
497
512
.10.1017/S0022112072002320
32.
Aibara
,
R.
,
Welsh
,
J. T.
,
Puria
,
S.
, and
Goode
,
R. L.
,
2001
, “
Human Middle-Ear Sound Transfer Function and Cochlear Input Impedance
,”
Hear. Res.
,
152
(
1–2
), pp.
100
109
.10.1016/S0378-5955(00)00240-9
33.
Ryan
,
M.
,
Lally
,
J.
,
Adams
,
J. K.
,
Higgins
,
S.
,
Ahmed
,
M.
,
Aden
,
J.
,
Esquivel
,
C.
, and
Spear
,
S. A.
,
2020
, “
Mechanical Energy Dissipation Through the Ossicular Chain and Inner Ear Using Laser Doppler Vibrometer Measurement of Round Window Velocity
,”
Otol. Neurotol.
,
41
(
3
), pp.
387
391
.10.1097/MAO.0000000000002509
34.
Freeman
,
D. M.
, and
Weiss
,
T. F.
,
1988
, “
The Role of Fluid Inertia in Mechanical Stimulation of Hair Cells
,”
Hear. Res.
,
35
(
2–3
), pp.
201
207
.10.1016/0378-5955(88)90118-9
35.
Freeman
,
D. M.
, and
Weiss
,
T. F.
,
1990a
, “
Hydrodynamic Analysis of a Two-Dimensional Model for Micromechanical Resonance of Free-Standing Hair Bundles
,”
Hear. Res.
,
48
(
1–2
), pp.
37
67
.10.1016/0378-5955(90)90198-X
36.
Freeman
,
D. M.
, and
Weiss
,
T. F.
,
1990b
, “
Superposition of Hydrodynamic Forces on a Hair Bundle
,”
Hear. Res.
,
48
(
1–2
), pp.
1
15
.10.1016/0378-5955(90)90195-U
37.
Billone
,
M.
, and
Raynor
,
S.
,
1973
, “
Transmission of Radial Shear Forces to Cochlear Hair Cells
,”
J. Acoust. Soc. Am.
,
54
(
5
), pp.
1143
1156
.10.1121/1.1914361
38.
Wright
,
A.
,
1984
, “
Dimensions of the Cochlear Stereocilia in Man and the Guinea Pig
,”
Hear. Res.
,
13
(
1
), pp.
89
98
.10.1016/0378-5955(84)90099-6
39.
Miyagi
,
T.
,
1958
, “
Viscous Flow at Low Reynolds Numbers Past an Infinite Row of Equal Circular Cylinders
,”
J. Phys. Soc. Jpn.
,
13
(
5
), pp.
493
496
.10.1143/JPSJ.13.493
40.
von Békésy
,
G.
,
1960
,
Experiments in Hearing
,
McGraw-Hill
,
New York
.
41.
Loh
,
C. H.
,
1983
, “
Multiple Scale Analysis of the Spirally Coiled Cochlea
,”
J. Acoust. Soc. Am.
,
74
(
1
), pp.
95
103
.10.1121/1.389622
You do not currently have access to this content.