Abstract

Spinal fusion is an effective surgical treatment for intervertebral disk degeneration. However, the consequences of implantation with interbody cages on load transfer and bone remodeling in the vertebral bodies have scarcely been investigated. Using detailed three-dimensional models of an intact and implanted lumbar spine and the strain energy density based bone remodeling algorithm, this study aimed to investigate the evolutionary changes in distribution of bone density (ρ) around porous and solid interbody cages. Follower load technique and submodeling approach were employed to simulate applied loading conditions on the lumbar spine models. The study determined the relationship between mechanical properties and parametrical characteristics of porous body-centered-cubic (BCC) models, which corroborated well with Gibson-Ashby and exponential regression models. Variations in porosity affected the peri-prosthetic stress distributions and bone remodeling around the cages. In comparison to the solid cage, stresses and strains in the cancellous bone decreased with an increase in cage porosity; whereas the range of motion increased. For the solid cage, increase in bone density of 20–28% was predicted in the L4 inferior and L5 superior regions; whereas the model with 78% porosity exhibited a small 3–5% change in bone density. An overall increase of 9–14% bone density was predicted in the L4 and L5 vertebrae after remodeling for solid interbody cages, which may influence disk degeneration in the adjacent segment. In comparison to the solid cage, an interbody cage with 65-78% porosity could be a viable and promising alternative, provided sufficient mechanical strength is offered.

References

1.
Radcliff
,
K. E.
,
Kepler
,
C. K.
,
Jakoi
,
A.
,
Sidhu
,
G. S.
,
Rihn
,
J.
,
Vaccaro
,
A. R.
,
Albert
,
T. J.
, and
Hilibrand
,
A. S.
,
2013
, “
Adjacent Segment Disease in the Lumbar Spine Following Different Treatment Interventions
,”
Spine J.
,
13
(
10
), pp.
1339
1349
.10.1016/j.spinee.2013.03.020
2.
Faizan
,
A.
,
Kiapour
,
A.
,
Kiapour
,
A. M.
, and
Goel
,
V. K.
,
2013
, “
Biomechanical Analysis of Various Footprints of Transforaminal Lumbar Interbody Fusion Devices
,”
J. Spinal Disord. Tech.
,
27
(
4
), pp.
118
127
.10.1097/BSD.0b013e3182a11478
3.
Kurtz
,
S. M.
, and
Devine
,
J. N.
,
2007
, “
PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants
,”
Biomaterials
,
28
(
32
), pp.
4845
4869
.10.1016/j.biomaterials.2007.07.013
4.
Panayotov
,
I. V.
,
Orti
,
V.
,
Cuisinier
,
F.
, and
Yachouh
,
J.
,
2016
, “
Polyetheretherketone (PEEK) for Medical Applications
,”
J. Mater. Sci. Mater. Med.
,
27
(
7
), p.
118
.10.1007/s10856-016-5731-4
5.
Olivares-Navarrete
,
R.
,
Gittens
,
R. A.
,
Schneider
,
J. M.
,
Hyzy
,
S. L.
,
Haithcock
,
D. A.
,
Ullrich
,
P. F.
,
Schwartz
,
Z.
, and
Boyan
,
B. D.
,
2012
, “
Osteoblasts Exhibit a More Differentiated Phenotype and Increased Bone Morphogenetic Protein Production on Titanium Alloy Substrates Than on Poly-Ether-Ether-Ketone
,”
Spine J.
,
12
(
3
), pp.
265
272
.10.1016/j.spinee.2012.02.002
6.
Santos
,
E. R. G.
,
Goss
,
D. G.
,
Morcom
,
R. K.
, and
Fraser
,
R. D.
,
2003
, “
Radiologic Assessment of Interbody Fusion Using Carbon Fiber Cages
,”
Spine
,
28
(
10
), pp.
997
1001
.10.1097/01.BRS.0000061988.93175.74
7.
Smith
,
M.
,
Guan
,
Z.
, and
Cantwell
,
W. J.
,
2013
, “
Finite Element Modelling of the Compressive Response of Lattice Structures Manufactured Using the Selective Laser Melting Technique
,”
Int. J. Mech. Sci.
,
67
, pp.
28
41
.10.1016/j.ijmecsci.2012.12.004
8.
Kadkhodapour
,
J.
,
Montazerian
,
H.
,
Darabi
,
A. C.
,
Anaraki
,
A. P.
,
Ahmadi
,
S. M.
,
Zadpoor
,
A. A.
, and
Schmauder
,
S.
,
2015
, “
Failure Mechanisms of Additively Manufactured Porous Biomaterials: Effects of Porosity and Type of Unit Cell
,”
J. Mech. Behav. Biomed. Mater.
,
50
, pp.
180
191
.10.1016/j.jmbbm.2015.06.012
9.
Mehboob
,
H.
,
Tarlochan
,
F.
,
Mehboob
,
A.
, and
Chang
,
S. H.
,
2018
, “
Finite Element Modelling and Characterization of 3D Cellular Microstructures for the Design of a Cementless Biomimetic Porous Hip Stem
,”
Mater. Des.
,
149
, pp.
101
112
.10.1016/j.matdes.2018.04.002
10.
Wang
,
L.
,
Kang
,
J.
,
Sun
,
C.
,
Li
,
D.
,
Cao
,
Y.
, and
Jin
,
Z.
,
2017
, “
Mapping Porous Microstructures to Yield Desired Mechanical Properties for Application in 3D Printed Bone Scaffolds and Orthopaedic Implants
,”
Mater. Des.
,
133
, pp.
62
68
.10.1016/j.matdes.2017.07.021
11.
Limmahakhun
,
S.
,
Oloyede
,
A.
,
Sitthiseripratip
,
K.
,
Xiao
,
Y.
, and
Yan
,
C.
,
2017
, “
3D-Printed Cellular Structures for Bone Biomimetic Implants
,”
Addit. Manuf.
,
15
, pp.
93
101
.10.1016/j.addma.2017.03.010
12.
Jetté
,
B.
,
Brailovski
,
V.
,
Dumas
,
M.
,
Simoneau
,
C.
, and
Terriault
,
P.
,
2018
, “
Femoral Stem Incorporating a Diamond Cubic Lattice Structure: Design, Manufacture and Testing
,”
J. Mech. Behav. Biomed. Mater.
,
77
, pp.
58
72
.10.1016/j.jmbbm.2017.08.034
13.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
, and
Raymont
,
D.
,
2012
, “
Evaluations of Cellular Lattice Structures Manufactured Using Selective Laser Melting
,”
Int. J. Mach. Tools Manuf.
,
62
, pp.
32
38
.10.1016/j.ijmachtools.2012.06.002
14.
Lee
,
Y. H.
,
Chung
,
C. J.
,
Wang
,
C. W.
,
Peng
,
Y.
T.
,
Chang
,
C. H.
,
Chen
,
C. H.
,
Chen
,
Y. N.
, and
Li
,
C. T.
,
2016
, “
Computational Comparison of Three Posterior Lumbar Interbody Fusion Techniques by Using Porous Titanium Interbody Cages With 50% Porosity
,”
Comput. Biol. Med.
,
71
, pp.
35
45
.10.1016/j.compbiomed.2016.01.024
15.
Tsai
,
P. I.
,
Hsu
,
C. C.
,
Chen
,
S. Y.
,
Wu
,
T. H.
, and
Huang
,
C. C.
,
2016
, “
Biomechanical Investigation Into the Structural Design of Porous Additive Manufactured Cages Using Numerical and Experimental Approaches
,”
Comput. Biol. Med.
,
76
, pp.
14
23
.10.1016/j.compbiomed.2016.06.016
16.
Zhang
,
Z.
,
Li
,
H.
,
Fogel
,
G. R.
,
Xiang
,
D.
,
Liao
,
Z.
, and
Liu
,
W.
,
2018
, “
Finite Element Model Predicts the Biomechanical Performance of Transforaminal Lumbar Interbody Fusion With Various Porous Additive Manufactured Cages
,”
Comput. Biol. Med.
,
95
, pp.
167
174
.10.1016/j.compbiomed.2018.02.016
17.
Chen
,
Y. N.
, and
Chang
,
C. W.
,
2021
, “
Computational Comparison of Three Different Cage Porosities in Posterior Lumbar Interbody Fusion With Porous Cage
,”
Comput. Biol. Med.
,
139
, p.
105036
.10.1016/j.compbiomed.2021.105036
18.
Huiskes
,
R.
,
Weinans
,
H.
,
Grootenboer
,
H. J.
,
Dalstra
,
M.
,
Fudala
,
B.
, and
Slooff
,
T. J.
,
1987
, “
Adaptive Bone-Remodeling Theory Applied to Prosthetic-Design Analysis
,”
J. Biomech.
,
20
(
11–12
), pp.
1135
1150
.10.1016/0021-9290(87)90030-3
19.
Mathai
,
B.
,
Dhara
,
S.
, and
Gupta
,
S.
,
2021
, “
Orthotropic Bone Remodelling Around Uncemented Femoral Implant: A Comparison With Isotropic Formulation
,”
Biomech. Model. Mechanobiol.
,
20
(
3
), pp.
1115
1134
.10.1007/s10237-021-01436-6
20.
Ghosh
,
R.
, and
Gupta
,
S.
,
2014
, “
Bone Remodelling Around Cementless Composite Acetabular Components: The Effects of Implant Geometry and Implant-Bone Interfacial Conditions
,”
J. Mech. Behav. Biomed. Mater.
,
32
, pp.
257
269
.10.1016/j.jmbbm.2014.01.010
21.
Goel
,
V. K.
,
Ramirez
,
S. A.
,
Kong
,
W.
, and
Gilbertson
,
L. G.
,
1995
, “
Cancellous Bone Young's Modulus Variation Within the Vertebral Body of a Ligamentous Lumbar Spine—Application of Bone Adaptive Remodeling Concepts
,”
ASME J. Biomech. Eng.
,
117
(
3
), pp.
266
272
.10.1115/1.2794180
22.
Goel
,
V. K.
, and
Seenivasan
,
G.
,
1994
, “
Applying Bone- Adaptive Remodelling Theory to Ligamentous Spine
,”
IEEE Eng. Med. Biol. Mag.
,
13
(
4
), pp.
508
516
.10.1109/51.310992
23.
Espinha
,
L. C.
,
Fernandes
,
P. R.
, and
Folgado
,
J.
,
2010
, “
Computational Analysis of Bone Remodeling During an Anterior Cervical Fusion
,”
J. Biomech.
,
43
(
15
), pp.
2875
2880
.10.1016/j.jbiomech.2010.07.027
24.
Van Rijsbergen
,
M.
,
Van Rietbergen
,
B.
,
Barthelemy
,
V.
,
Eltes
,
P.
,
Lazáry
,
Á.
,
Lacroix
,
D.
,
Noailly
,
J.
,
Tho
,
M. C. H. B.
,
Wilson
,
W.
, and
Ito
,
K.
,
2018
, “
Comparison of Patient-Specific Computational Models Vs. Clinical Follow-Up, for Adjacent Segment Disc Degeneration and Bone Remodelling After Spinal Fusion
,”
PLoS One
,
13
(
8
), p.
e0200899
.10.1371/journal.pone.0200899
25.
Calvo-Echenique
,
A.
,
Bashkuev
,
M.
,
Reitmaier
,
S.
,
Pérez-del Palomar
,
A.
, and
Schmidt
,
H.
,
2019
, “
Numerical Simulations of Bone Remodelling and Formation Following Nucleotomy
,”
J. Biomech.
,
88
, pp.
138
147
.10.1016/j.jbiomech.2019.03.034
26.
Chowdhury
,
S.
,
Anand
,
A.
,
Singh
,
A.
, and
Pal
,
B.
,
2021
, “
Evaluation of Mechanical Properties of Ti-25Nb BCC Porous Cell Structure and Their Association With Structure Porosity: A Combined Finite Element Analysis and Analytical Approach for Orthopedic Application
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
235
(
7
), pp.
827
837
.10.1177/09544119211011309
27.
Talukdar
,
R. G.
,
Mukhopadhyay
,
K. K.
,
Dhara
,
S.
, and
Gupta
,
S.
,
2021
, “
Numerical Analysis of the Mechanical Behaviour of Intact and Implanted Lumbar Functional Spinal Units: Effects of Loading and Boundary Conditions
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
235
(
7
), pp.
792
804
.10.1177/09544119211008343
28.
Morgan
,
E. F.
,
Bayraktar
,
H. H.
, and
Keaveny
,
T. M.
,
2003
, “
Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site
,”
J. Biomech.
,
36
(
7
), pp.
897
904
.10.1016/S0021-9290(03)00071-X
29.
Taddei
,
F.
,
Pancanti
,
A.
, and
Viceconti
,
M.
,
2004
, “
An Improved Method for the Automatic Mapping of Computed Tomography Numbers Onto Finite Element Models
,”
Med. Eng. Phys.
,
26
(
1
), pp.
61
69
.10.1016/S1350-4533(03)00138-3
30.
Ghosh, R., Mukherjee, K., and Gupta, S.,
2013
, “Bone Remodelling Around Uncemented Metallic and Ceramic Acetabular Components,”
Proc. Inst. Mech. Eng. Part H, J. Eng. Med.
,
227
(
5
), pp.
490
502
.10.1177/0954411913478703
31.
Lowe
,
T. G.
,
Tahernia
,
A. D.
,
O'Brien
,
M. F.
, and
Smith
,
D. A. B.
,
2002
, “
Unilateral Transforaminal Posterior Lumbar Interbody Fusion (TLIF): Indications, Technique, and 2-Year Results
,”
J. Spinal Disord. Tech.
,
15
(
1
), pp.
31
38
.10.1097/00024720-200202000-00005
32.
Zhong
,
Z. C.
,
Chen
,
S. H.
, and
Hung
,
C. H.
,
2009
, “
Load- and Displacement-Controlled Finite Element Analyses on Fusion and Non-Fusion Spinal Implants
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
223
(
2
), pp.
143
157
.10.1243/09544119JEIM476
33.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Meade
,
K. P.
,
Lee
,
B.
, and
Dunlap
,
B.
,
1999
, “
A Follower Load Increases the Load-Carrying Capacity of the Lumbar Spine in Compression
,”
Spine
,
24
(
10
), pp.
1003
1009
.10.1097/00007632-199905150-00014
34.
Rohlmann
,
A.
,
Neller
,
S.
,
Claes
,
L.
,
Bergmann
,
G.
, and
Wilke
,
H. J.
,
2001
, “
Influence of a Follower Load on Intradiscal Pressure and Intersegmental Rotation of the Lumbar Spine
,”
Spine
,
26
(
24
), pp.
557
561
.10.1097/00007632-200112150-00014
35.
Choi
,
J.
,
Shin
,
D. A.
, and
Kim
,
S.
,
2017
, “
Biomechanical Effects of the Geometry of Ball-and-Socket Artificial Disc on Lumbar Spine
,”
Spine
,
42
(
6
), pp.
E332
E339
.10.1097/BRS.0000000000001789
36.
Weinans
,
H.
,
Huiskes
,
R.
,
Van Rietbergen
,
B.
,
Sumner
,
D. R.
,
Turner
,
T. M.
, and
Galante
,
J. O.
,
1993
, “
Adaptive Bone Remodeling Around Bonded Noncemented Total Hip Arthroplasty: A Comparison Between Animal Experiments and Computer Simulation
,”
J. Orthop. Res.
,
11
(
4
), pp.
500
513
.10.1002/jor.1100110405
37.
Huiskes
,
R.
, and
Van Rietbergen
,
B.
,
1995
, “
Preclinical Testing of Total Hip Stems: The Effects of Coating Placement
,”
Clin. Orthop. Relat. Res.
,
319
(
1995
), pp.
64
76
.https://pure.tue.nl/ws/files/1937911/585442.pdf
38.
Huiskes
,
R.
,
Weinans
,
H.
, and
Van Rietbergen
,
B.
,
1992
, “
The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials
,”
Clin. Orthop. Relat. Res.
,
274
, pp.
124
134
.repub.eur.nl/pub/15376/OA_1728998.pdf
39.
Martin
,
R. B.
,
1991
, “
Determinants of the Mechanical Properties of Bones
,”
J. Biomech.
,
24
(
Suppl. 1
), pp.
79
88
.10.1016/0021-9290(91)90379-2
40.
Suárez
,
D. R.
,
Weinans
,
H.
, and
Van Keulen
,
F.
,
2012
, “
Bone Remodelling Around a Cementless Glenoid Component
,”
Biomech. Model. Mechanobiol.
,
11
(
6
), pp.
903
913
.10.1007/s10237-011-0360-9
41.
Chen
,
C. S.
,
Cheng
,
C. K.
,
Liu
,
C. L.
, and
Lo
,
W. H.
,
2001
, “
Stress Analysis of the Disc Adjacent to Interbody Fusion in Lumbar Spine
,”
Med. Eng. Phys.
,
23
(
7
), pp.
485
493
.10.1016/S1350-4533(01)00076-5
42.
Yamamoto
,
I.
,
Panjabi
,
M. M.
,
Crisco
,
T.
, and
Oxland
,
T.
,
1989
, “
Three-Dimensional Movements of the Whole Lumbar Spine and Lumbosacral Joint
,”
Spine
,
14
(
11
), pp.
1256
1260
.10.1097/00007632-198911000-00020
43.
Mizrahi
,
J.
,
Silva
,
M. J.
,
Keaveny
,
T. M.
,
Edwards
,
W. T.
, and
Hayes
,
W. C.
,
1993
, “
Finite-Element Stress Analysis of the Normal and Osteoporotic Lumbar Vertebral Body
,”
Spine
,
18
(
14
), pp.
2088
2096
.10.1097/00007632-199310001-00028
44.
Mathai
,
B.
, and
Gupta
,
S.
,
2020
, “
The Influence of Loading Configurations on Numerical Evaluation of Failure Mechanisms in an Uncemented Femoral Prosthesis
,”
Int. J. Numer. Methods Biomed. Eng.
,
36
(
8
), p.
e3353
.10.1002/cnm.3353
45.
Polikeit
,
A.
,
Ferguson
,
S. J.
,
Nolte
,
L. P.
, and
Orr
,
T. E.
,
2003
, “
Factors Influencing Stresses in the Lumbar Spine After the Insertion of Intervertebral Cages: Finite Element Analysis
,”
Eur. Spine J.
,
12
(
4
), pp.
413
420
.10.1007/s00586-002-0505-8
46.
Kim
,
Y.
, and
Vanderby
,
R.
,
2000
, “
Finite Element Analysis of Interbody Cages in a Human Lumbar Spine
,”
Comput. Methods Biomech. Biomed. Eng.
,
3
(
4
), pp.
257
272
.10.1080/10255840008915270
47.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
,
2001
, “
Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site
,”
J. Biomech.
,
34
(
5
), pp.
569
577
.10.1016/S0021-9290(01)00011-2
48.
Etebar
,
S.
, and
Cahill
,
D. W.
,
1999
, “
Risk Factors for Adjacent-Segment Failure Following Lumbar Fixation With Rigid Instrumentation for Degenerative Instability
,”
J. Neurosurg.
,
90
(
2
), pp.
163
169
.10.3171/spi.1999.90.2.0163
49.
Singh
,
K.
,
An
,
H. S.
,
Samartzis
,
D.
,
Nassr
,
A.
,
Provus
,
J.
,
Hickey
,
M.
, and
Andersson
,
G. B.
,
2005
, “
A Prospective Cohort Analysis of Adjacent Vertebral Body Bone Mineral Density in Lumbar Surgery Patients With or Without Instrumented Posterolateral Fusion a 9- to 12-Year Follow-Up
,”
Spine J.
,
30
(
15
), pp.
1750
1755
.10.1097/01.brs.0000172228.74763.99
50.
Pye
,
S. R.
,
Reid
,
D. M.
,
Adams
,
J. E.
,
Silman
,
A. J.
, and
O'Neill
,
T. W.
,
2006
, “
Radiographic Features of Lumbar Disc Degeneration and Bone Mineral Density in Men and Women
,”
Ann. Rheum. Dis.
,
65
(
2
), pp.
234
238
.10.1136/ard.2005.038224
51.
Wang
,
Y.
,
Boyd
,
S. K.
,
Battié
,
M. C.
,
Yasui
,
Y.
, and
Videman
,
T.
,
2011
, “
Is Greater Lumbar Vertebral BMD Associated With More Disk Degeneration? A Study Using ΜcT and Discography
,”
J. Bone Miner. Res.
,
26
(
11
), pp.
2785
2791
.10.1002/jbmr.476
You do not currently have access to this content.