Abstract

In vitro testing has been conducted to provide a comprehensive understanding of the biomechanics of the cervical spine. This has allowed a characterization of the stability of the spine as influenced by the intrinsic properties of its tissue constituents and the severity of degeneration or injury. This also enables the preclinical estimation of spinal implant functionality and the success of operative procedures. The purpose of this review paper was to compile methodologies and results from various studies addressing spinal kinematics in pre- and postoperative conditions so that they could be compared. The reviewed literature was evaluated to provide suggestions for a better approach for future studies, to reduce the uncertainties and facilitate comparisons among various results. The overview is presented in a way to inform various disciplines, such as experimental testing, design development, and clinical treatment. The biomechanical characteristics of the cervical spine, mainly the segmental range of motion (ROM), intradiscal pressure (IDP), and facet joint load (FJL), have been assessed by testing functional spinal units (FSUs). The relative effects of pathologies including disc degeneration, muscle dysfunction, and ligamentous transection have been studied by imposing on the specimen complex load scenarios imitating physiological conditions. The biomechanical response is strongly influenced by specimen type, test condition, and the different types of implants utilized in the different experimental groups.

References

1.
Sherrill
,
J. T.
,
Siddicky
,
S. F.
,
Davis
,
W. D.
,
Chen
,
C.
,
Bumpass
,
D. B.
, and
Mannen
,
E. M.
,
2020
, “
Validation of a Custom Spine Biomechanics Simulator: A Case for Standardization
,”
J. Biomech
,
98
, p.
109470
.10.1016/j.jbiomech.2019.109470
2.
Ziegler
,
P.
,
Kaps
,
H. P.
,
Goerke
,
S.
,
Tendulkar
,
G.
,
Buck sen
,
A.
,
Nuessler
,
A.
, and
Schmoelz
,
W.
,
2019
, “
How Does a Novel Knitted Titanium Nucleus Prosthesis Change the Kinematics of a Cervical Spine Segment? A Biomechanical Cadaveric Study
,”
Clin. Biomech.
,
63
, pp.
134
139
.10.1016/j.clinbiomech.2019.03.001
3.
Patel
,
V. V.
,
Wuthrich
,
Z. R.
,
McGilvray
,
K. C.
,
Lafleur
,
M. C.
,
Lindley
,
E. M.
,
Sun
,
D.
, and
Puttlitz
,
C. M.
,
2017
, “
Cervical Facet Force Analysis After Disc Replacement Versus Fusion
,”
Clin. Biomech.
,
44
, pp.
52
58
.10.1016/j.clinbiomech.2017.03.007
4.
Snyder
,
J. T.
,
Tzermiadianos
,
M. N.
,
Ghanayem
,
A. J.
,
Voronov
,
L. I.
,
Rinella
,
A.
,
Dooris
,
A.
,
Carandang
,
G.
,
Renner
,
S. M.
,
Havey
,
R. M.
, and
Patwardhan
,
A. G.
,
2007
, “
Effect of Uncovertebral Joint Excision on the Motion Response of the Cervical Spine After Total Disc Replacement
,”
Spine
,
32
, pp.
2965
2969
.10.1097/BRS.0b013e31815cd482
5.
Zheng
,
M.
,
Ji
,
W.
,
Zou
,
L.
,
Huang
,
Z.
,
Zhu
,
Q.
, and
Qu
,
D.
,
2018
, “
Anterior Transdiscal Axial Screw Fixation for Subaxial Cervical Spine: A Biomechanical Study
,”
World Neurosurg.
,
110
, pp.
e459
e464
.10.1016/j.wneu.2017.11.008
6.
Stein
,
M. I.
,
Nayak
,
A. N.
,
Gaskins
,
R. B.
,
Cabezas
,
A. F.
,
Santoni
,
B. G.
, and
Castellvi
,
A. E.
,
2014
, “
Biomechanics of an Integrated Interbody Device Versus ACDF Anterior Locking Plate in a Single-Level Cervical Spine Fusion Construct
,”
Spine J.
,
14
(
1
), pp.
128
136
.10.1016/j.spinee.2013.06.088
7.
Hart
,
R.
,
Gillard
,
J.
,
Prem
,
S.
,
Shea
,
M.
, and
Kitchel
,
S.
,
2005
, “
Comparison of Stiffness and Failure Load of Two Cervical Spine Fixation Techniques in an In Vitro Human Model
,”
J. Spinal Disord. Tech.
,
18
, pp.
115
118
.10.1097/01.bsd.0000132288.65702.6e
8.
Ohara
,
Y.
,
Hara
,
T.
,
Orías
,
A.
,
Tani
,
S.
,
Inoue
,
N.
, and
Mizuno
,
J.
,
2018
, “
In Vitro Biomechanical Evaluation of a Monocoque Plate-Spacer Construct for Cervical Open-Door Laminoplasty
,”
PLoS One
,
13
(
10
), p.
e0204147
.10.1371/journal.pone.0204147
9.
Adamo
,
P. F.
,
Kobayashi
,
H.
,
Markel
,
M.
, and
Vanderby
,
R.
,
2007
, “
In Vitro Biomechanical Comparison of Cervical Disk Arthroplasty, Ventral Slot Procedure, and Smooth Pins With Polymethylmethacrylate Fixation at Treated and Adjacent Canine Cervical Motion Units
,”
Vet. Surg.
,
36
(
8
), pp.
729
741
.10.1111/j.1532-950X.2007.00327.x
10.
Dmitriev
,
A. E.
,
Cunningham
,
B. W.
,
Hu
,
N.
,
Sell
,
G.
,
Vigna
,
F.
, and
McAfee
,
P. C.
,
2005
, “
Adjacent Level Intradiscal Pressure and Segmental Kinematics Following a Cervical Total Disc Arthroplasty: An In Vitro Human Cadaveric Model
,”
Spine
,
30
(
10
), pp.
1165
1172
.10.1097/01.brs.0000162441.23824.95
11.
Cédric
,
B.
,
Campana
,
S.
,
Persohn
,
S.
,
Perrin
,
G.
, and
Skalli
,
W.
,
2012
, “
Cervical Disc Prosthesis Versus Arthrodesis Using One-Level, Hybrid and Two-Level Constructs: An In Vitro Investigation
,”
Eur. Spine J.
,
21
(
3
), pp.
432
442
.10.1007/s00586-011-1974-4
12.
Bell
,
K. M.
,
Yan
,
Y.
,
Hartman
,
R. A.
, and
Lee
,
J. Y.
,
2018
, “
Influence of Follower Load Application on Moment-Rotation Parameters and Intradiscal Pressure in the Cervical Spine
,”
J. Biomech.
,
76
, pp.
167
172
.10.1016/j.jbiomech.2018.05.031
13.
Daentzer
,
D.
,
Welke
,
B.
,
Hurschler
,
C.
,
Husmann
,
N.
,
Jansen
,
C.
,
Flamme
,
C. H.
, and
Richter
,
B. I.
,
2015
, “
In Vitro-Analysis of Kinematics and Intradiscal Pressures in Cervical Arthroplasty Versus fusion - A Biomechanical Study in a Sheep Model With Two Semi-Constrained Prosthesis
,”
Biomed. Eng. Online
,
14
, pp.
1
15
.10.1186/s12938-015-0018-4
14.
Kretzer
,
R. M.
,
Hsu
,
W.
,
Hu
,
N.
,
Umekoji
,
H.
,
Jallo
,
G. I.
,
McAfee
,
P. C.
,
Tortolani
,
P. J.
, and
Cunningham
,
B. W.
,
2012
, “
Adjacent-Level Range of Motion and Intradiscal Pressure After Posterior Cervical Decompression and Fixation: An In Vitro Human Cadaveric Model
,”
Spine
,
37
(
13
), pp.
E778
E785
.10.1097/BRS.0b013e31824780b8
15.
Liu
,
Q.
,
Guo
,
Q.
,
Yang
,
J.
,
Zhang
,
P.
,
Xu
,
T.
,
Cheng
,
X.
,
Chen
,
J.
,
Guan
,
H.
, and
Ni
,
B.
,
2016
, “
Subaxial Cervical Intradiscal Pressure and Segmental Kinematics Following Atlantoaxial Fixation in Different Angles
,”
World Neurosurg.
,
87
, pp.
521
528
.10.1016/j.wneu.2015.09.025
16.
Lou
,
J.
,
Li
,
Y.
,
Wang
,
B.
,
Meng
,
Y.
,
Wu
,
T.
, and
Liu
,
H.
,
2017
, “
In Vitro Biomechanical Comparison After Fixed- and Mobile-Core Artificial Cervical Disc Replacement Versus Fusion
,”
Medicine (Baltimore)
,
96
(
41
), pp.
1
6
.10.1097/MD.0000000000008291
17.
Wu
,
Z. X.
,
Han
,
B. J.
,
Zhao
,
X.
,
Kong
,
L.
,
Liu
,
D.
,
Cui
,
G.
, and
Lei
,
W.
,
2012
, “
Biomechanical Evaluation of a Novel Total Cervical Prosthesis in a Single-Level Cervical Subtotal Corpectomy Model: An In Vitro Human Cadaveric Study
,”
J. Surg. Res.
,
175
(
1
), pp.
76
81
.10.1016/j.jss.2011.02.022
18.
Moher
,
D.
,
Liberati
,
A.
,
Tetzlaff
,
J.
,
Altman
,
D. G.
,
Altman
,
D.
,
Antes
,
G.
,
Atkins
,
D.
, et al., and
The PRISMA Group,
2009
, “
Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement
,”
PLoS Med.
,
6
(
7
), p.
e1000097
.10.1371/journal.pmed.1000097
19.
Wilke
,
H. J.
,
Kettler
,
A.
, and
Claes
,
L. E.
,
1997
, “
Are Sheep Shines a Valid Biomechanical Model for Human Spines?
,”
Spine
,
22
, pp.
2365
2374
.10.1097/00007632-199710150-00009
20.
Yan
,
Y.
,
Bell
,
K. M.
,
Hartman
,
R. A.
,
Hu
,
J.
,
Wang
,
W.
,
Kang
,
J. D.
, and
Lee
,
J. Y.
,
2017
, “
In Vitro Evaluation of Translating and Rotating Plates Using a Robot Testing System Under Follower Load
,”
Eur. Spine J.
,
26
(
1
), pp.
189
199
.10.1007/s00586-015-4203-8
21.
Bell
,
K. M.
,
Yan
,
Y.
,
Debski
,
R. E.
,
Sowa
,
G. A.
,
Kang
,
J. D.
, and
Tashman
,
S.
,
2016
, “
Influence of Varying Compressive Loading Methods on Physiologic Motion Patterns in the Cervical Spine
,”
J. Biomech.
,
49
(
2
), pp.
167
172
.10.1016/j.jbiomech.2015.11.045
22.
Traynelis
,
V. C.
,
Sherman
,
J.
,
Nottmeier
,
E.
,
Singh
,
V.
,
McGilvray
,
K.
,
Puttlitz
,
C. M.
, and
Leahy
,
P. D.
,
2014
, “
Kinetic Analysis of Anterior Cervical Discectomy and Fusion Supplemented With Transarticular Facet Screws: Laboratory Investigation
,”
J. Neurosurg. Spine
,
20
(
5
), pp.
485
491
.10.3171/2014.1.SPINE13837
23.
Kang
,
D. G.
,
Wagner
,
S. C.
,
Tracey
,
R. W.
,
Cody
,
J. P.
,
Gaume
,
R. E.
, and
Lehman
,
R. A.
,
2017
, “
Biomechanical Stability of a Stand-Alone Interbody Spacer in Two-Level and Hybrid Cervical Fusion Constructs
,”
Glob. Spine J.
,
7
(
7
), pp.
681
688
.10.1177/2192568217700105
24.
Kettler
,
A.
,
Hartwig
,
E.
,
Schultheiß
,
M.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2002
, “
Mechanically Simulated Muscle Forces Strongly Stabilize Intact and Injured Upper Cervical Spine Specimens
,”
J. Biomech.
,
35
(
3
), pp.
339
346
.10.1016/S0021-9290(01)00206-8
25.
Miura
,
T.
,
Panjabi
,
M. M.
, and
Cripton
,
P. A.
,
2002
, “
A Method to Simulate In Vivo Cervical Spine Kinematics Using In Vitro Compressive Preload
,”
Spine
,
27
, pp.
43
48
.10.1097/00007632-200201010-00011
26.
Panjabi
,
M. M.
,
Miura
,
T.
,
Cripton
,
P. A.
,
Wang
,
J. L.
,
Nain
,
A. S.
, and
DuBois
,
C.
,
2001
, “
Development of a System for In Vitro Neck Muscle Force Replication in Whole Cervical Spine Experiments
,”
Spine
,
26
, pp.
2214
2219
.10.1097/00007632-200110150-00012
27.
Newell
,
N.
,
Little
,
J. P.
,
Christou
,
A.
,
Adams
,
M. A.
,
Adam
,
C. J.
, and
Masouros
,
S. D.
,
2017
, “
Biomechanics of the Human Intervertebral Disc: A Review of Testing Techniques and Results
,”
J. Mech. Behav. Biomed. Mater.
,
69
, pp.
420
434
.10.1016/j.jmbbm.2017.01.037
28.
Friis
,
E. A.
,
Arnold
,
P. M.
, and
Goel
,
V. K.
,
2017
,
Mechanical Testing of Cervical, Thoracolumbar, and Lumbar Spine Implants
, Mechanical Testing of Orthopaedic Implants, 1st ed., E. A. Friis, ed., Woodhead Publishing, Philadelphia, PA,
pp.
161
180
.
29.
Crawford
,
N. R.
,
Baek
,
S.
,
Sawa
,
A.
,
Safavi-Abbasi
,
S.
,
Sonntag
,
V.
, and
Duggal
,
N.
,
2012
, “
Biomechanics of a Fixed-Center of Rotation Cervical Intervertebral Disc Prosthesis
,”
Int. J. Spine Surg.
,
6
(
1
), pp.
34
42
.10.1016/j.ijsp.2011.10.003
30.
Daubs
,
M. D.
,
Patel
,
A. A.
,
Lawrence
,
B. D.
, and
Brodke
,
D. S.
,
2016
, “
Excision of the Posterior Longitudinal Ligament During Anterior Cervical Corpectomy
,”
Clin. Spine Surg.
,
29
(
6
), pp.
242
247
.10.1097/BSD.0b013e31827610d8
31.
Puttlitz
,
C. M.
,
Rousseau
,
M. A.
,
Xu
,
Z.
,
Hu
,
S.
,
Tay
,
B.
, and
Lotz
,
J. C.
,
2004
, “
Intervertebral Disc Replacement Maintains Cervical Spine Kinetics
,”
Spine
,
29
, pp.
2809
2814
.10.1097/01.brs.0000147739.42354.a9
32.
Barrey
,
C.
,
Rousseau
,
M. A.
,
Persohn
,
S.
,
Campana
,
S.
,
Perrin
,
G.
, and
Skalli
,
W.
,
2015
, “
Relevance of Using a Compressive Preload in the Cervical Spine: An Experimental and Numerical Simulating Investigation
,”
Eur. J. Orthop. Surg. Traumatol.
,
25
(
S1
), pp.
155
165
.10.1007/s00590-015-1625-2
33.
Cheng
,
C. H.
,
Chen
,
P. J.
,
Kuo
,
Y. W.
, and
Wang
,
J. L.
,
2011
, “
The Effects of Disc Degeneration and Muscle Dysfunction on Cervical Spine Stability From a Biomechanical Study
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
225
(
2
), pp.
149
157
.10.1243/09544119JEIM805
34.
Colle
,
K. O.
,
Butler
,
J. B.
,
Reyes
,
P. M.
,
Newcomb
,
A.
,
Theodore
,
N.
, and
Crawford
,
N. R.
,
2013
, “
Biomechanical Evaluation of a Metal-on-Metal Cervical Intervertebral Disc Prosthesis
,”
Spine J.
,
13
(
11
), pp.
1640
1649
.10.1016/j.spinee.2013.06.026
35.
Wilke
,
H. J.
,
Wenger
,
K.
, and
Claes
,
L.
,
1998
, “
Testing Criteria for Spinal Implants: Recommendations for the Standardization of In Vitro Stability Testing of Spinal Implants
,”
Eur. Spine J.
,
7
(
2
), pp.
148
154
.10.1007/s005860050045
36.
DeVries
,
N. A.
,
Gandhi
,
A. A.
,
Fredericks
,
D. C.
,
Grosland
,
N. M.
, and
Smucker
,
J. D.
,
2012
, “
Biomechanical Analysis of the Intact and Destabilized Sheep Cervical Spine
,”
Spine
,
37
(
16
), pp.
957
963
.10.1097/BRS.0b013e3182512425
37.
Clarke
,
E. C.
,
Appleyard
,
R. C.
, and
Bilston
,
L. E.
,
2007
, “
Immature Sheep Spines Are More Flexible Than Mature Spines: An In Vitro Biomechanical Study
,”
Spine
,
32
(
26
), pp.
2970
2979
.10.1097/BRS.0b013e31815cde16
38.
Long
,
R. G.
,
Zderic
,
I.
,
Gueorguiev
,
B.
,
Ferguson
,
S. J.
,
Alini
,
M.
,
Grad
,
S.
, and
Iatridis
,
J. C.
,
2018
, “
Effects of Level, Loading Rate, Injury and Repair on Biomechanical Response of Ovine Cervical Intervertebral Discs
,”
Ann. Biomed. Eng.
,
46
(
11
), pp.
1911
1920
.10.1007/s10439-018-2077-8
39.
Goel
,
V. K.
,
2004
, “
Biomechanical Comparison of Bioabsorbable Cervical Spine Interbody Fusion Cages: Point of View
,”
Spine
,
29
, p.
1746
.10.1097/01.BRS.0000134577.37741.5E
40.
Wilke
,
H. J.
,
Kettler
,
A.
,
Goetz
,
C.
, and
Claes
,
L.
,
2000
, “
Subsidence Resulting From Simulated Postoperative Neck Movements: An In Vitro Investigation With a New Cervical Fusion Cage
,”
Spine
,
25
(
21
), pp.
2762
2770
.10.1097/00007632-200011010-00008
41.
Holsgrove
,
T. P.
,
Gheduzzi
,
S.
,
Gill
,
H. S.
, and
Miles
,
A. W.
,
2014
, “
The Development of a Dynamic, Six-Axis Spine Simulator
,”
Spine J.
,
14
(
7
), pp.
1308
1317
.10.1016/j.spinee.2013.11.045
42.
Panjabi
,
M. M.
,
1988
, “
Biomechanical Evaluation of Spinal Fixation Devices: I. A Conceptual Framework
,”
Spine
,
13
(
10
), pp.
1129
1134
.10.1097/00007632-198810000-00013
43.
Aghayev
,
K.
,
Doulgeris
,
J. J.
,
Gonzalez-Blohm
,
S. A.
,
Eleraky
,
M.
,
Lee
,
W. E.
, and
Vrionis
,
F. D.
,
2014
, “
Biomechanical Comparison of a Two-Level Anterior Discectomy and a One-Level Corpectomy, Combined With Fusion and Anterior Plate Reconstruction in the Cervical Spine
,”
Clin. Biomech.
,
29
(
1
), pp.
21
25
.10.1016/j.clinbiomech.2013.10.016
44.
Barrey
,
C.
,
Mosnier
,
T.
,
Jund
,
J.
,
Perrin
,
G.
, and
Skalli
,
W.
,
2009
, “
In Vitro Evaluation of a Ball-and-Socket Cervical Disc Prosthesis With Cranial Geometric Center: Laboratory Investigation
,”
J. Neurosurg. Spine
,
11
(
5
), pp.
538
546
.10.3171/2009.6.SPINE0949
45.
Bauman
,
J. A.
,
Jaumard
,
N. V.
,
Guarino
,
B. B.
,
Weisshaar
,
C. L.
,
Lipschutz
,
D. E.
,
Welch
,
W. C.
, and
Winkelstein
,
B. A.
,
2012
, “
Facet Joint Contact Pressure is Not Significantly Affected by ProDisc Cervical Disc Arthroplasty in Sagittal Bending: A Single-Level Cadaveric Study
,”
Spine J.
,
12
(
10
), pp.
949
959
.10.1016/j.spinee.2012.08.013
46.
Caravaggi
,
P.
,
Chaudary
,
S.
,
Uko
,
L.
,
Chen
,
L.
,
Khamsi
,
B.
, and
Vives
,
M.
,
2013
, “
A Novel Design for Application of Pure Moments In-Vitro: Application to the Kinematic Analysis of the Cervical Spine
,”
J. Biomech.
,
46
(
6
), pp.
1221
1224
.10.1016/j.jbiomech.2013.01.006
47.
Caravaggi
,
P.
,
Chen
,
L.
,
Uko
,
L.
,
Zorrilla
,
A.
,
Hauser
,
S.
, and
Vives
,
M. J.
,
2017
, “
Kinematics of the Cervical Spine After Unilateral Facet Fracture
,”
Spine
,
42
(
18
), pp.
E1042
E1049
.10.1097/BRS.0000000000002080
48.
Cunningham
,
B. W.
,
Hu
,
N.
,
Zorn
,
C. M.
, and
McAfee
,
P. C.
,
2010
, “
Biomechanical Comparison of Single- and Two-Level Cervical Arthroplasty Versus Arthrodesis: Effect on Adjacent-Level Spinal Kinematics
,”
Spine J.
,
10
(
4
), pp.
341
349
.10.1016/j.spinee.2010.01.006
49.
Cusick
,
J. F.
,
Pintar
,
F. A.
,
Cheng
,
J. S.
,
Lifshutz
,
J. I.
, and
Yoganandan
,
N.
,
2018
, “
Posterior Cervical Spine Crisscross Fixation: Biomechanical Evaluation
,”
Clin. Biomech.
,
55
, pp.
18
22
.10.1016/j.clinbiomech.2018.04.001
50.
Dmitriev
,
A. E.
,
Kuklo
,
T. R.
,
Lehman
,
R. A.
, and
Rosner
,
M. K.
,
2007
, “
Stabilizing Potential of Anterior, Posterior, and Circumferential Fixation for Multilevel Cervical Arthrodesis: An In Vitro Human Cadaveric Study of the Operative and Adjacent Segment Kinematics
,”
Spine
,
32
(
6
), pp.
E188
196
.10.1097/01.brs.0000257577.70576.07
51.
Duff
,
J.
,
Hussain
,
M. M.
,
Klocke
,
N.
,
Harris
,
J. A.
,
Yandamuri
,
S. S.
,
Bobinski
,
L.
,
Daniel
,
R. T.
, and
Bucklen
,
B. S.
,
2018
, “
Does Pedicle Screw Fixation of the Subaxial Cervical Spine Provide Adequate Stabilization in a Multilevel Vertebral Body Fracture Model? An In Vitro Biomechanical Study
,”
Clin. Biomech.
,
53
, pp.
72
78
.10.1016/j.clinbiomech.2018.02.009
52.
Greene
,
D. L.
,
Crawford
,
N. R.
,
Chamberlain
,
R. H.
,
Park
,
S. C.
, and
Crandall
,
D.
,
2003
, “
Biomechanical Comparison of Cervical Interbody Cage Versus Structural Bone Graft
,”
Spine J.
,
3
, pp.
262
269
.10.1016/S1529-9430(03)00029-9
53.
Karalar
,
T.
,
Ünal
,
F.
,
Güzey
,
F. K.
,
Kiris
,
T.
,
Bozdag
,
E.
, and
Sünbüloglu
,
E.
,
2004
, “
Biomechanical Analysis of Cervical Multilevel Oblique Corpectomy: An In Vitro Study in Sheep
,”
Acta Neurochir.
,
146
(
8
), pp.
813
818
.10.1007/s00701-004-0277-5
54.
Kikkawa
,
J.
,
Cunningham
,
B. W.
,
Shirado
,
O.
,
Hu
,
N.
,
McAfee
,
P. C.
, and
Oda
,
H.
,
2010
, “
Multidirectional Flexibility of the Spine Following Posterior Decompressive Surgery After Single-Level Cervical Disc Arthroplasty: An In Vitro Biomechanical Investigation
,”
Spine
,
35
(
25
), pp.
E1465
1471
.10.1097/BRS.0b013e3181f06ca8
55.
Nayak
,
A. N.
,
Stein
,
M. I.
,
James
,
C. R.
,
Gaskins
,
R. B.
,
Cabezas
,
A. F.
,
Adu-Lartey
,
M.
,
Castellvi
,
A. E.
, and
Santoni
,
B. G.
,
2014
, “
Biomechanical Analysis of an Interbody Cage With Three Integrated Cancellous Lag Screws in a Two-Level Cervical Spine Fusion Construct: An In Vitro Study
,”
Spine J.
,
14
(
12
), pp.
3002
3010
.10.1016/j.spinee.2014.06.011
56.
Paik
,
H.
,
Kang
,
D. G.
,
Lehman
,
R. A.
,
Cardoso
,
M. J.
,
Gaume
,
R. E.
,
Ambati
,
D. V.
, and
Dmitriev
,
A. E.
,
2014
, “
Do Stand-Alone Interbody Spacers With Integrated Screws Provide Adequate Segmental Stability for Multilevel Cervical Arthrodesis?
,”
Spine J.
,
14
(
8
), pp.
1740
1747
.10.1016/j.spinee.2014.01.034
57.
Rasoulinejad
,
P.
,
McLachlin
,
S. D.
,
Bailey
,
S. I.
,
Gurr
,
K. R.
,
Bailey
,
C. S.
, and
Dunning
,
C. E.
,
2012
, “
The Importance of the Posterior Osteoligamentous Complex to Subaxial Cervical Spine Stability in Relation to a Unilateral Facet Injury
,”
Spine J.
,
12
(
7
), pp.
590
595
.10.1016/j.spinee.2012.07.003
58.
Reddy
,
C.
,
Ingalhalikar
,
A. V.
,
Channon
,
S.
,
Lim
,
T. H.
,
Torner
,
J.
, and
Hitchon
,
P. W.
,
2007
, “
In Vitro Biomechanical Comparison of Transpedicular Versus Translaminar C-2 Screw Fixation in C2-3 Instrumentation
,”
J. Neurosurg. Spine
,
7
(
4
), pp.
414
418
.10.3171/SPI-07/10/414
59.
Majid
,
K.
,
Chinthakunta
,
S.
,
Muzumdar
,
A.
, and
Khalil
,
S.
,
2012
, “
A Comparative Biomechanical Study of a Novel Integrated Plate Spacer for Stabilization of Cervical Spine: An In Vitro Human Cadaveric Model
,”
Clin. Biomech.
,
27
(
6
), pp.
532
536
.10.1016/j.clinbiomech.2011.12.013
60.
Richter
,
M.
,
Wilke
,
H. J.
,
Kluger
,
P.
,
Neller
,
S.
,
Claes
,
L.
, and
Puhl
,
W.
,
2000
, “
Biomechanical Evaluation of a New Modular Rod-Screw Implant System for Posterior Instrumentation of the Occipito-Cervical Spine: In-Vitro Comparison With Two Established Implant Systems
,”
Eur. Spine J.
,
9
(
5
), pp.
417
425
.10.1007/s005860000173
61.
Roch
,
P. J.
,
Wagner
,
M.
,
Weiland
,
J.
,
Gezzi
,
R.
,
Spiering
,
S.
,
Lehmann
,
W.
,
Saul
,
D.
,
Weiser
,
L.
,
Viezens
,
L.
, and
Wachowski
,
M. M.
,
2020
, “
Total Disc Arthroplasties Change the Kinematics of Functional Spinal Units During Lateral Bending
,”
Clin. Biomech.
,
73
, pp.
130
139
.10.1016/j.clinbiomech.2020.01.007
62.
Hermann
,
A.
,
Voumard
,
B.
,
Waschk
,
M. A.
,
Hettlich
,
B. F.
, and
Forterre
,
F.
,
2018
, “
In Vitro Biomechanical Comparison of Four Different Ventral Surgical Procedures on the Canine Fourth-Fifth Cervical Vertebral Motion Unit
,”
Vet. Comp. Orthop. Traumatol.
,
31
(
06
), pp.
413
421
.10.1055/s-0038-1667200
63.
Wilke
,
H. J.
,
Geppert
,
J.
, and
Kienle
,
A.
,
2011
, “
Biomechanical In Vitro Evaluation of the Complete Porcine Spine in Comparison With Data of the Human Spine
,”
Eur. Spine J.
,
20
(
11
), pp.
1859
1868
.10.1007/s00586-011-1822-6
64.
DiAngelo
,
D. J.
,
Roberston
,
J. T.
,
Metcalf
,
N. H.
,
McVay
,
B. J.
, and
Champ Davis
,
R.
,
2003
, “
Biomechanical Testing of an Artificial Cervical Joint and an Anterior Cervical Plate
,”
J. Spinal Disord. Tech.
,
16
, pp.
314
323
.10.1097/00024720-200308000-00002
65.
Panjabi
,
M. M.
,
2007
, “
Hybrid Multidirectional Test Method to Evaluate Spinal Adjacent-Level Effects
,”
Clin. Biomech.
,
22
(
3
), pp.
257
265
.10.1016/j.clinbiomech.2006.08.006
66.
Gédet
,
P.
,
Thistlethwaite
,
P. A.
, and
Ferguson
,
S. J.
,
2007
, “
Minimizing Errors During In Vitro Testing of Multisegmental Spine Specimens: Considerations for Component Selection and Kinematic Measurement
,”
J. Biomech.
,
40
(
8
), pp.
1881
1885
.10.1016/j.jbiomech.2006.07.024
67.
Eck
,
J. C.
,
Humphreys
,
S. C.
,
Lim
,
T.
,
Jeong
,
S. T.
,
Kim
,
J. G.
,
Hodges
,
S. D.
, and
An
,
H. S.
,
2002
, “
Biomechanical Study on the Effect of Cervical Spine Fusion on Adjacent-Level Intradiscal Pressure and Segmental Motion
,”
Spine
(Phila Pa 1976),
27
(
22
), pp.
2431
2434
.10.1097/00007632-200211150-00003
68.
Goodwin
,
R. R.
,
James
,
K. S.
,
Daniels
,
A. U.
, and
Dunn
,
H. K.
,
1994
, “
Distraction and Compression Loads Enhance Spine Torsional Stiffness
,”
J. Biomech.
,
27
(
8
), pp.
1049
1057
.10.1016/0021-9290(94)90221-6
69.
ADAMS
,
M. A.
, and
HUTTON
,
W. C.
,
1981
, “
The Relevance of Torsion to the Mechanical Derangement of the Lumbar Spine
,”
Spine
,
6
(
3
), pp.
241
248
.10.1097/00007632-198105000-00006
70.
Grassmann
,
S.
,
Oxland
,
T. R.
,
Gerich
,
U.
, and
Nolte
,
L. P.
,
1998
, “
Constrained Testing Conditions Affect the Axial Rotation Response of Lumbar Functional Spinal Units
,”
Spine
,
23
, pp.
1155
1162
.10.1097/00007632-199805150-00016
71.
Bell
,
K. M.
,
Hartman
,
R. A.
,
Gilbertson
,
L. G.
, and
Kang
,
J. D.
,
2013
, “
In Vitro Spine Testing Using a Robot-Based Testing System: Comparison of Displacement Control and “Hybrid Control”
,”
J. Biomech.
,
46
(
10
), pp.
1663
1669
.10.1016/j.jbiomech.2013.04.007
72.
Lou
,
J.
,
Li
,
H.
,
Rong
,
X.
,
Wu
,
W.
, and
Liu
,
H.
,
2016
, “
Location Change of Center of Rotation After Single-Level Cervical Total Disc Replacement With ProDisc-C
,”
Acta Orthop. Traumatol. Turc.
,
50
, pp.
339
345
.10.3944/AOTT.2016.15.0182
73.
Puttlitz
,
C. M.
,
Deviren
,
V.
,
Smith
,
J. A.
,
Kleinstueck
,
F. S.
,
Tran
,
Q.
,
Thurlow
,
R. W.
,
Eisele
,
P.
, and
Lotz
,
J. C.
,
2004
, “
Biomechanics of Cervical Laminoplasty: Kinetic Studies Comparing Different Surgical Techniques, Temporal Effects and the Degree of Level Involvement
,”
Eur. Spine J.
,
13
(
3
), pp.
213
221
.10.1007/s00586-004-0684-6
74.
Daniels
,
A. H.
,
Paller
,
D. J.
,
Feller
,
R. J.
,
Thakur
,
N. A.
,
Biercevicz
,
A. M.
,
Palumbo
,
M. A.
,
Crisco
,
J. J.
, and
Madom
,
I. A.
,
2012
, “
Examination of Cervical Spine Kinematics in Complex, Multiplanar Motions After Anterior Cervical Discectomy and Fusion and Total Disc Replacement
,”
Int. J. Spine Surg.
,
6
(
1
), pp.
190
194
.10.1016/j.ijsp.2012.07.002
75.
Dvorak
,
J.
,
Hayek
,
J.
, and
Zehnder
,
R.
,
1987
, “
CT-Functional Diagnostics of the Rotatory Instability of the Upper Cervical Spine. Part 2. An Evaluation on Healthy Adults and Patients With Suspected Instability
,”
Spine
,
12
(
8
), pp.
726
731
.10.1097/00007632-198710000-00002
76.
Penning
,
L.
,
1978
, “
Normal Movements of the Cervical Spine
,”
Am. J. Roentgenol.
,
130
(
2
), pp.
317
326
.10.2214/ajr.130.2.317
77.
White
,
A. A.
, 3rd.
, and
Panjabi
,
M. M.
,
1978
, “
The Basic Kinematics of the Human Spine. A Review of Past and Current Knowledge
,”
Spine
,
3
(
1
), pp.
12
20
.10.1097/00007632-197803000-00003
78.
Panjabi
,
M. M.
,
Cholewicki
,
J.
,
Nibu
,
K.
,
Grauer
,
J.
,
Babat
,
L. B.
, and
Dvorak
,
J.
,
1998
, “
Critical Load of the Human Cervical Spine: An In Vitro Experimental Study
,”
Clin. Biomech.
,
13
(
1
), pp.
11
17
.10.1016/S0268-0033(97)00057-0
79.
Moroney
,
S. P.
,
Schultz
,
A. B.
, and
Miller
,
J. A.
,
1988
, “
Analysis and Measurement of Neck Loads
,”
J. Orthop. Res. Off. Publ. Orthop. Res. Soc.
,
6
(
5
), pp.
713
720
.10.1002/jor.1100060514
80.
Dvorak
,
J.
,
Antinnes
,
J. A.
,
Panjabi
,
M.
,
Loustalot
,
D.
, and
Bonomo
,
M.
,
1992
, “
Age and Gender Related Normal Motion of the Cervical Spine
,”
Spine
,
17
, p.
S393-S398
.10.1097/00007632-199210001-00009
81.
Lind
,
B.
,
Sihlbom
,
H.
,
Nordwall
,
A.
, and
Malchau
,
H.
,
1989
, “
Normal Range of Motion of the Cervical Spine
,”
Arch. Phys. Med. Rehabil.
,
70
(
9
), pp.
692
695
.https://pubmed.ncbi.nlm.nih.gov/2774888/
82.
Ordway
,
N. R.
,
Seymour
,
R. J.
,
Donelson
,
R. G.
,
Hojnowski
,
L. S.
, and
Edwards
,
W. T.
,
1999
, “
Cervical Flexion, Extension, Protrusion, and Retraction. A Radiographic Segmental Analysis
,”
Spine
,
24
(
3
), pp.
240
247
.10.1097/00007632-199902010-00008
83.
Lysell
,
E.
,
1969
, “
Motion in the Cervical Spine. An Experimental Study on Autopsy Specimens
,”
Acta Orthop. Scand.
,
40
(
sup123
), pp.
1
61
. 1+.10.3109/ort.1969.40.suppl-123.01
84.
Wen
,
N.
,
Lavaste
,
F.
,
Santin
,
J. J.
, and
Lassau
,
J. P.
,
1993
, “
Three-Dimensional Biomechanical Properties of the Human Cervical Spine In Vitro
,”
Eur. Spine J.
,
2
(
1
), pp.
12
15
.10.1007/BF00301049
85.
NACHEMSON
,
A.
, and
MORRIS
,
J. M.
,
1964
, “
In Vivo Measurements of Intradiscal Pressure. Discometry, a Method for the Determination of Pressure in the Lower Lumbar Discs
,”
J. Bone Jt. Surg. Am
,
46
(
5
), pp.
1077
1092
.10.2106/00004623-196446050-00012
86.
Wilke
,
H. J.
,
Neef
,
P.
,
Caimi
,
M.
,
Hoogland
,
T.
, and
Claes
,
L. E.
,
1999
, “
New In Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life
,”
Spine
,
24
, pp.
755
762
.10.1097/00007632-199904150-00005
87.
Nachemson
,
A.
,
1965
, “
The Effect of Forward Leaning on Lumbar Intradiscal Pressure
,”
Acta Orthop.
,
35
(
1–4
), pp.
314
328
.10.3109/17453676508989362
88.
Pospiech
,
J.
,
Stolke
,
D.
,
Wilke
,
H. J.
, and
Claes
,
L. E.
,
1999
, “
Intradiscal Pressure Recordings in the Cervical Spine
,”
Neurosurgery
,
44
(
2
), pp.
379
379
.10.1097/00006123-199902000-00078
89.
Richter
,
M.
,
Wilke
,
H.-J.
,
Kluger
,
P.
,
Claes
,
L.
, and
Puhl
,
W.
,
2000
, “
Load-Displacement Properties of the Normal and Injured Lower Cervical Spine In Vitro
,”
Eur. Spine J.
,
9
(
2
), pp.
104
108
.10.1007/s005860050219
90.
Panjabi
,
M. M.
,
White
,
A. A.
, and
Johnson
,
R. M.
,
1975
, “
Cervical Spine Mechanics as a Function of Transection of Components
,”
J. Biomech.
,
8
(
5
), pp.
327
336
.10.1016/0021-9290(75)90085-8
91.
Panjabi
,
M.
,
Dvorak
,
J.
,
Crisco
,
J. J.
,
Oda
,
T.
,
Wang
,
P.
, and
Grob
,
D.
,
1991
, “
Effects of Alar Ligament Transection on Upper Cervical Spine Rotation
,”
J. Orthop. Res.
,
9
(
4
), pp.
584
593
.10.1002/jor.1100090415
92.
Oxland
,
T. R.
, and
Panjabi
,
M. M.
,
1992
, “
The Onset and Progression of Spinal Injury: A Demonstration of Neutral Zone Sensitivity
,”
J. Biomech.
,
25
(
10
), pp.
1165
1172
.10.1016/0021-9290(92)90072-9
93.
Brown
,
S.
, and
Potvin
,
J. R.
,
2005
, “
Constraining Spine Stability Levels in an Optimization Model Leads to the Prediction of Trunk Muscle Cocontraction and Improved Spine Compression Force Estimates
,”
J. Biomech.
,
38
(
4
), pp.
745
754
.10.1016/j.jbiomech.2004.05.011
94.
Panjabi
,
M. M.
,
2006
, “
A Hypothesis of Chronic Back Pain: Ligament Subfailure Injuries Lead to Muscle Control Dysfunction
,”
Eur. Spine J.
,
15
(
5
), pp.
668
676
.10.1007/s00586-005-0925-3
95.
Derenda
,
M.
, and
Kowalina
,
I.
,
2006
, “
Cervical Laminoplasty–Review of Surgical Techniques, Indications, Methods of Efficacy Evaluation, and Complications
,”
Neurol. Neurochir. Pol.
,
40
(
5
), pp.
422
–4
32
.https://pubmed.ncbi.nlm.nih.gov/17103356/
96.
Nowinski
,
G. P.
,
Visarius
,
H.
,
Nolte
,
L. P.
, and
Herkowitz
,
H. N.
,
1993
, “
A Biomechanical Comparison of Cervical Laminaplasty and Cervical Laminectomy With Progressive Facetectomy
,”
Spine
,
18
, pp.
1995
2004
.10.1097/00007632-199310001-00012
97.
Kubo
,
S.
,
Goel
,
V. K.
,
Yang
,
S.-J.
, and
Tajima
,
N.
,
2003
, “
Biomechanical Evaluation of Cervical Double-Door Laminoplasty Using Hydroxyapatite Spacer
,”
Spine
,
28
, pp.
227
234
.10.1097/01.BRS.0000042246.09816.20
98.
Li
,
H.
,
Pei
,
B. Q.
,
Yang
,
J. C.
,
Hai
,
Y.
,
Li
,
D. Y.
, and
Wu
,
S. Q.
,
2015
, “
Load Rate of Facet Joints at the Adjacent Segment Increased After Fusion
,”
Chin. Med. J.
,
128
(
8
), pp.
1042
1046
.10.4103/0366-6999.155080
99.
McAfee
,
P. C.
,
Cunningham
,
B.
,
Dmitriev
,
A.
,
Hu
,
N.
,
Woo Kim
,
S.
,
Cappuccino
,
A.
, and
Pimenta
,
L.
,
2003
, “
Cervical Disc Replacement-Porous Coated Motion Prosthesis: A Comparative Biomechanical Analysis Showing the Key Role of the Posterior Longitudinal Ligament
,”
Spine
,
28
(
20
), pp.
S176
–S1
85
.10.1097/01.BRS.0000092219.28382.0C
100.
Hacker
,
R. J.
,
Cauthen
,
J. C.
,
Gilbert
,
T. J.
, and
Griffith
,
S. L.
,
2000
, “
A Prospective Randomized Multicenter Clinical Evaluation of an Anterior Cervical Fusion Cage
,”
Spine
,
25
, pp.
2646
–26
54
.10.1097/00007632-200010150-00017
101.
Brodke
,
D. S.
,
Gollogly
,
S.
,
Mohr
,
R. A.
,
Nguyen
,
B. K.
,
Dailey
,
A. T.
, and
Bachus
,
K. N.
,
2001
, “
Dynamic Cervical Plates: Biomechanical Evaluation of Load Sharing and Stiffness
,”
Spine
,
26
(
12
), pp.
1324
1329
.10.1097/00007632-200106150-00010
102.
DuBois
,
C. M.
,
Bolt
,
P. M.
,
Todd
,
A. G.
,
Gupta
,
P.
,
Wetzel
,
F. T.
, and
Phillips
,
F. M.
,
2007
, “
Static Versus Dynamic Plating for Multilevel Anterior Cervical Discectomy and Fusion
,”
Spine J.
,
7
(
2
), pp.
188
193
.10.1016/j.spinee.2006.07.004
103.
Chang
,
U. K.
,
Kim
,
D. H.
,
Lee
,
M. C.
,
Willenberg
,
R.
,
Kim
,
S. H.
, and
Lim
,
J.
,
2007
, “
Changes in Adjacent-Level Disc Pressure and Facet Joint Force After Cervical Arthroplasty Compared With Cervical Discectomy and Fusion
,”
J. Neurosurg. Spine
,
7
(
1
), pp.
33
39
.10.3171/SPI-07/07/033
104.
Flamme
,
C. H.
,
Hurschler
,
C.
,
Heymann
,
C.
, and
von der Heide
,
N.
,
2004
, “
[Biomechanical Testing of Different Ventral Fixation Devices on the Bovine Lumbar Spine]
,”
Z. Orthop. Ihre Grenzgeb
,
142
(
01
), pp.
88
96
.10.1055/s-2004-818033
105.
Flamme
,
C. H.
,
Hurschler
,
C.
,
Heymann
,
C.
, and
von der Heide
,
N.
,
2005
, “
Comparative Biomechanical Testing of Anterior and Posterior Stabilization Procedures
,”
Spine
,
30
, pp.
E352
62
.10.1097/01.brs.0000168551.60385.b3
106.
Flamme
,
C. H.
,
von der Heide
,
N.
,
Heymann
,
C.
, and
Hurschler
,
C.
,
2006
, “
Primary Stability of Anterior Lumbar Stabilization: Interdependence of Implant Type and Endplate Retention or Removal
,”
Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc.
,
15
(
6
), pp.
807
818
.10.1007/s00586-005-0993-4
107.
Urban
,
J. P.
,
Holm
,
S.
,
Maroudas
,
A.
, and
Nachemson
,
A.
,
1982
, “
Nutrition of the Intervertebral Disc: Effect of Fluid Flow on Solute Transport
,”
Clin. Orthop. Relat. Res.
, (170), pp.
296
302
.https://pubmed.ncbi.nlm.nih.gov/7127960/
108.
Buckwalter
,
J. A.
,
1976
, “
Aging and Degeneration of the Human Intervertebral Disc
,”
Spine
,
20
(
1995
), pp.
1307
1314
.10.1097/00007632-199506000-00022
109.
Adams
,
M. A.
,
McNally
,
D. S.
, and
Dolan
,
P.
,
1996
, “
‘Stress’ Distributions Inside Intervertebral Discs. The Effects of Age and Degeneration
,”
J. Bone Jt. Surg. Br
,
78-B
(
6
), pp.
965
972
.10.1302/0301-620X.78B6.0780965
110.
Jaumard
,
N. V.
,
Bauman
,
J. A.
,
Guarino
,
B. B.
,
Gokhale
,
A. J.
,
Lipschutz
,
D. E.
,
Weisshaar
,
C. L.
,
Welch
,
W. C.
, and
Winkelstein
,
B. A.
,
2013
, “
ProDisc Cervical Arthroplasty Does Not Alter Facet Joint Contact Pressure During Lateral Bending or Axial Torsion
,”
Spine
,
38
, pp.
E84
–E
93
.10.1097/BRS.0b013e31827b8a2d
111.
Kurz
,
B.
,
Jin
,
M.
,
Patwari
,
P.
,
Cheng
,
D. M.
,
Lark
,
M. W.
, and
Grodzinsky
,
A. J.
,
2001
, “
Biosynthetic Response and Mechanical Properties of Articular Cartilage After Injurious Compression
,”
J. Orthop. Res. Off. Publ. Orthop. Res. Soc.
,
19
(
6
), pp.
1140
1146
..10.1016/S0736-0266(01)00033-X
112.
Morel
,
V.
,
Merçay
,
A.
, and
Quinn
,
T. M.
,
2005
, “
Prestrain Decreases Cartilage Susceptibility to Injury by Ramp Compression In Vitro
,”
Osteoarthr. Cartil.
,
13
(
11
), pp.
964
970
.10.1016/j.joca.2005.06.016
113.
Schmidt
,
H.
,
Heuer
,
F.
,
Claes
,
L.
, and
Wilke
,
H.-J.
,
2008
, “
The Relation Between the Instantaneous Center of Rotation and Facet Joint Forces—A Finite Element Analysis
,”
Clin. Biomech. (Bristol, Avon)
,
23
(
3
), pp.
270
278
.10.1016/j.clinbiomech.2007.10.001
114.
DiAngelo
,
D. J.
,
Foley
,
K. T.
,
Vossel
,
K. A.
,
Rampersaud
,
Y. R.
, and
Jansen
,
T. H.
,
2000
, “
Anterior Cervical Plating Reverses Load Transfer Through Multilevel Strut-Grafts
,”
Spine
,
25
(
7
), pp.
783
795
.10.1097/00007632-200004010-00005
115.
Wang
,
C.-S.
,
Chang
,
J.-H.
,
Chang
,
T.-S.
,
Chen
,
H.-Y.
, and
Cheng
,
C.-W.
,
2012
, “
Loading Effects of Anterior Cervical Spine Fusion on Adjacent Segments
,”
Kaohsiung J. Med. Sci.
,
28
(
11
), pp.
586
594
.10.1016/j.kjms.2012.04.024
116.
Eck
,
J. C.
,
Humphreys
,
S. C.
, and
Hodges
,
S. D.
,
1999
, “
Adjacent-Segment Degeneration After Lumbar Fusion: A Review of Clinical, Biomechanical, and Radiologic Studies
,”
Am. J. Orthop. (Belle Mead. NJ)
,
28
(
6
), pp.
336
340
.https://pubmed.ncbi.nlm.nih.gov/10401898/
117.
Yan
,
W.
,
Xuesong
,
Z.
,
Songhua
,
X.
,
Ning
,
L.
,
Zheng
,
W.
, and
Mi
,
Z.
,
2006
, “
Clinical Report of Cervical Arthroplasty in Management of Spondylotic Myelopathy in Chinese
,”
J. Orthop. Surg. Res.
,
1
, pp.
1
7
.10.1186/1749-799X-1-13
118.
Baba
,
H.
,
Maezawa
,
Y.
,
Furusawa
,
N.
,
Imura
,
S.
, and
Tomita
,
K.
,
1995
, “
Flexibility and Alignment of the Cervical Spine After Laminoplasty for Spondylotic Myelopathy
,”
Int. Orthop.
,
19
(
2
), pp.
116
121
.10.1007/BF00179972
119.
Chung
,
J. Y.
,
Kim
,
S. K.
,
Jung
,
S. T.
, and
Lee
,
K. B.
,
2014
, “
Clinical Adjacent-Segment Pathology After Anterior Cervical Discectomy and Fusion: Results After a Minimum of 10-Year Follow-Up
,”
Spine J.
,
14
(
10
), pp.
2290
2298
.10.1016/j.spinee.2014.01.027
120.
Rousseau
,
M.-A.
,
Cottin
,
P.
,
Levante
,
S.
,
Nogier
,
A.
,
Lazennec
,
J.-Y.
, and
Skalli
,
W.
,
2008
, “
In Vivo Kinematics of Two Types of Ball-and-Socket Cervical Disc Replacements in the Sagittal Plane: Cranial Versus Caudal Geometric Center
,”
Spine
,
33
(
1
), pp.
E6
E9
.10.1097/BRS.0b013e31815e5dce
121.
Yi
,
S.
,
Shin
,
H. C.
,
Kim
,
K. N.
,
Park
,
H. K.
,
Jang
,
I. T.
, and
Yoon
,
D. H.
,
2007
, “
Modified Techniques to Prevent Sagittal Imbalance After Cervical Arthroplasty
,”
Spine
,
32
, pp.
1986
1991
.10.1097/BRS.0b013e318133fb99
122.
Park
,
D. K.
,
Lin
,
E. L.
, and
Phillips
,
F. M.
,
2011
, “
Index and Adjacent Level Kinematics After Cervical Disc Replacement and Anterior Fusion: In Vivo Quantitative Radiographic Analysis
,”
Spine
,
36
(
9
), pp.
721
730
.10.1097/BRS.0b013e3181df10fc
123.
Bertagnoli
,
R.
,
Yue
,
J. J.
,
Pfeiffer
,
F.
,
Fenk-Mayer
,
A.
,
Lawrence
,
J. P.
,
Kershaw
,
T.
, and
Nanieva
,
R.
,
2005
, “
Early Results After ProDisc-C Cervical Disc Replacement
,”
J. Neurosurg. Spine
,
2
(
4
), pp.
403
410
.10.3171/spi.2005.2.4.0403
124.
Rabin
,
D.
,
Bertagnoli
,
R.
,
Wharton
,
N.
,
Pickett
,
G. E.
, and
Duggal
,
N.
,
2009
, “
Sagittal Balance Influences Range of Motion: An In Vivo Study With the ProDisc-C
,”
Spine J.
,
9
(
2
), pp.
128
133
.10.1016/j.spinee.2008.01.009
125.
Lazaro
,
B.
,
Yucesoy
,
K.
,
Yuksel
,
K. Z.
,
Kowalczyk
,
I.
,
Rabin
,
D.
,
Fink
,
M.
, and
Duggal
,
N.
,
2010
, “
Effect of Arthroplasty Design on Cervical Spine Kinematics: Analysis of the Bryan Disc, ProDisc-C, and Synergy Disc
,”
Neurosurg. Focus
,
28
(
6
), p.
E6
.10.3171/2010.3.FOCUS1058
126.
Moumene
,
M.
, and
Geisler
,
F. H.
,
2007
, “
Comparison of Biomechanical Function at Ideal and Varied Surgical Placement for Two Lumbar Artificial Disc Implant Designs: Mobile-Core Versus Fixed-Core
,”
Spine
,
32
(
17
), pp.
1840
1851
.10.1097/BRS.0b013e31811ec29c
127.
Rousseau
,
M.-A.
,
Bradford
,
D. S.
,
Bertagnoli
,
R.
,
Hu
,
S. S.
, and
Lotz
,
J. C.
,
2006
, “
Disc Arthroplasty Design Influences Intervertebral Kinematics and Facet Forces
,”
Spine J.
,
6
(
3
), pp.
258
266
.10.1016/j.spinee.2005.07.004
128.
Lee
,
S.-H.
,
Im
,
Y.-J.
,
Kim
,
K.-T.
,
Kim
,
Y.-H.
,
Park
,
W.-M.
, and
Kim
,
K.
,
2011
, “
Comparison of Cervical Spine Biomechanics After Fixed- and Mobile-Core Artificial Disc Replacement: A Finite Element Analysis
,”
Spine
,
36
(
9
), pp.
700
708
.10.1097/BRS.0b013e3181f5cb87
129.
Yu
,
C. C.
,
Hao
,
D. J.
,
Huang
,
D. G.
,
Qian
,
L. X.
,
Feng
,
H.
,
Li
,
H. K.
, and
Zhao
,
S. C.
,
2016
, “
Biomechanical Analysis of a Novel Prosthesis Based on the Physiological Curvature of Endplate for Cervical Disc Replacement
,”
PLoS One
,
11
(
6
), p.
e0158234
.10.1371/journal.pone.0158234
130.
Ryu
,
K.-S.
,
Park
,
C.-K.
,
Jun
,
S.-C.
, and
Huh
,
H.-Y.
,
2010
, “
Radiological Changes of the Operated and Adjacent Segments Following Cervical Arthroplasty After a Minimum 24-Month Follow-Up: Comparison Between the Bryan and Prodisc-C Devices
,”
J. Neurosurg. Spine
,
13
(
3
), pp.
299
307
.10.3171/2010.3.SPINE09445
131.
Jaumard
,
N. V.
,
Bauman
,
J. A.
,
Weisshaar
,
C. L.
,
Guarino
,
B. B.
,
Welch
,
W. C.
, and
Winkelstein
,
B. A.
,
2011
, “
Contact Pressure in the Facet Joint During Sagittal Bending of the Cadaveric Cervical Spine
,”
ASME J. Biomech. Eng.
,
133
(
7
), p.
071004
.10.1115/1.4004409
132.
Pickett
,
G. E.
,
Rouleau
,
J. P.
, and
Duggal
,
N.
,
2005
, “
Kinematic Analysis of the Cervical Spine Following Implantation of an Artificial Cervical Disc
,”
Spine
,
30
, pp.
1949
1954
.10.1097/01.brs.0000176320.82079.ce
133.
Goffin
,
J.
,
Van Calenbergh
,
F.
,
van Loon
,
J.
,
Casey
,
A.
,
Kehr
,
P.
,
Liebig
,
K.
,
Lind
,
B.
,
Logroscino
,
C.
,
Sgrambiglia
,
R.
, and
Pointillart
,
V.
,
2003
, “
Intermediate Follow-Up After Treatment of Degenerative Disc Disease With the Bryan Cervical Disc Prosthesis: Single-Level and bi-Level
,”
Spine
,
28
, pp.
2673
2678
.10.1097/01.BRS.0000099392.90849.AA
134.
Ahn
,
H. S.
, and
DiAngelo
,
D. J.
,
1976
, “
A Biomechanical Study of Artificial Cervical Discs Using Computer Simulation
,”
Spine
,
33
(
2008
), pp.
883
892
.10.1097/BRS.0b013e31816b1f5c
135.
Phillips
,
F. M.
,
Tzermiadianos
,
M. N.
,
Voronov
,
L. I.
,
Havey
,
R. M.
,
Carandang
,
G.
,
Dooris
,
A.
, and
Patwardhan
,
A. G.
,
2009
, “
Effect of Two-Level Total Disc Replacement on Cervical Spine Kinematics
,”
Spine
,
34
, pp.
E794
E799
.10.1097/BRS.0b013e3181afe4bb
136.
Zafarparandeh
,
I.
,
Erbulut
,
D. U.
,
Lazoglu
,
I.
, and
Ozer
,
A. F.
,
2014
, “
Development of a Finite Element Model of the Human Cervical Spine
,”
Turk. Neurosurg.
,
24
(
3
), pp.
312
318
.10.5137/1019-5149.JTN.8486-13.0
137.
Zhang
,
Q. H.
,
Teo
,
E. C.
,
Ng
,
H. W.
, and
Lee
,
V. S.
,
2006
, “
Finite Element Analysis of Moment-Rotation Relationships for Human Cervical Spine
,”
J. Biomech.
,
39
(
1
), pp.
189
193
.10.1016/j.jbiomech.2004.10.029
138.
Yoganandan
,
N.
,
Kumaresan
,
S.
,
Voo
,
L.
, and
Pintar
,
F. A.
,
1996
, “
Finite Element Applications in Human Cervical Spine Modeling
,”
Spine
,
21
, pp.
1824
1834
.10.1097/00007632-199608010-00022
139.
Kallemeyn
,
N.
,
Gandhi
,
A.
,
Kode
,
S.
,
Shivanna
,
K.
,
Smucker
,
J.
, and
Grosland
,
N.
,
2010
, “
Validation of a C2–C7 Cervical Spine Finite Element Model Using Specimen-Specific Flexibility Data
,”
Med. Eng. Phys
,
32
(
5
), pp.
482
489
.10.1016/j.medengphy.2010.03.001
140.
Park
,
W. M.
,
Kim
,
K.
, and
Kim
,
Y. H.
,
2015
, “
Changes in Range of Motion, Intradiscal Pressure, and Facet Joint Force After Intervertebral Disc and Facet Joint Degeneration in the Cervical Spine
,”
J. Mech. Sci. Technol.
,
29
(
7
), pp.
3031
3038
.10.1007/s12206-015-0633-9
141.
Komeili
,
A.
,
Rasoulian
,
A.
,
Moghaddam
,
F.
,
El-Rich
,
M.
, and
Li
,
L. P.
,
2021
, “
The Importance of Intervertebral Disc Material Model on the Prediction of Mechanical Function of the Cervical Spine
,”
BMC Musculoskelet. Disord.
,
22
(
1
), p.
324
.10.1186/s12891-021-04172-1
142.
Panjabi
,
M. M.
,
Crisco
,
J. J.
,
Vasavada
,
A.
,
Oda
,
T.
,
Cholewicki
,
J.
,
Nibu
,
K.
, and
Shin
,
E.
,
2001
, “
Mechanical Properties of the Human Cervical Spine as Shown by Three-Dimensional Load-Displacement Curves
,”
Spine
,
26
, pp.
2692
2700
.10.1097/00007632-200112150-00012
143.
Wheeldon
,
J. A.
,
Stemper
,
B. D.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
2008
, “
Validation of a Finite Element Model of the Young Normal Lower Cervical Spine
,”
Ann. Biomed. Eng.
,
36
(
9
), pp.
1458
1469
.10.1007/s10439-008-9534-8
144.
Cai
,
X.-Y.
,
YuChi
,
C.-X.
,
Du
,
C.-F.
, and
Mo
,
Z.-J.
,
2020
, “
The Effect of Follower Load on the Range of Motion, Facet Joint Force, and Intradiscal Pressure of the Cervical Spine: A Finite Element Study
,”
Med. Biol. Eng. Comput.
,
58
(
8
), pp.
1695
1705
.10.1007/s11517-020-02189-7
145.
Hua
,
W.
,
Zhi
,
J.
,
Wang
,
B.
,
Ke
,
W.
,
Sun
,
W.
,
Yang
,
S.
,
Li
,
L.
, and
Yang
,
C.
,
2020
, “
Biomechanical Evaluation of Adjacent Segment Degeneration After One- or Two-Level Anterior Cervical Discectomy and Fusion Versus Cervical Disc Arthroplasty: A Finite Element Analysis
,”
Comput. Methods Prog. Biomed.
,
189
, p.
105352
.10.1016/j.cmpb.2020.105352
146.
Chung
,
T.-T.
,
Hueng
,
D.-Y.
, and
Lin
,
S.-C.
,
2015
, “
Hybrid Strategy of Two-Level Cervical Artificial Disc and Intervertebral Cage: Biomechanical Effects on Tissues and Implants
,”
Medicine (Baltimore)
,
94
(
47
), p.
e2048
.10.1097/MD.0000000000002048
147.
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
1999
, “
Finite Element Analysis of the Cervical Spine: A Material Property Sensitivity Study
,”
Clin. Biomech. (Bristol, Avon)
,
14
(
1
), pp.
41
53
.10.1016/S0268-0033(98)00036-9
148.
Ng
,
H. W.
,
Teo
,
E. C.
, and
Lee
,
V. S.
,
2004
, “
Statistical Factorial Analysis on the Material Property Sensitivity of the Mechanical Responses of the C4-C6 Under Compression, Anterior and Posterior Shear
,”
J. Biomech.
,
37
(
5
), pp.
771
777
.10.1016/j.jbiomech.2003.09.025
149.
Herron
,
M. R.
,
Park
,
J.
,
Dailey
,
A. T.
,
Brockmeyer
,
D. L.
, and
Ellis
,
B. J.
,
2020
, “
Febio Finite Element Models of the Human Cervical Spine
,”
J. Biomech.
,
113
, p.
110077
.10.1016/j.jbiomech.2020.110077
150.
Zhao
,
X.
, and
Yuan
,
W.
,
2019
, “
Biomechanical Analysis of Cervical Range of Motion and Facet Contact Force After a Novel Artificial Cervical Disc Replacement
,”
Am. J. Transl. Res.
,
11
(
5
), pp.
3109
3115
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6556652/
151.
Wen
,
N.
,
Lavaste
,
F.
,
Santin
,
J. J.
, and
Lassau
,
J. P.
,
1993
, “
Three-Dimensional Biomechanical Properties of the Human Cervical Spine In Vitro. I. Analysis of Normal Motion
,”
Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc.
,
2
(
1
), pp.
2
11
.10.1007/BF00301048
152.
Peacock
,
A.
,
1952
, “
Observations on the Postnatal Structure of the Intervertebral Disc in Man
,”
J. Anat.
,
86
(
2
), pp.
162
179
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1273769/
153.
Lustrin
,
E. S.
,
Karakas
,
S. P.
,
Ortiz
,
A. O.
,
Cinnamon
,
J.
,
Castillo
,
M.
,
Vaheesan
,
K.
,
Brown
,
J. H.
,
Diamond
,
A. S.
,
Black
,
K.
, and
Singh
,
S.
,
2003
, “
Pediatric Cervical Spine: Normal Anatomy, Variants, and Trauma
,”
Radiogr. Rev. Publ. Radiol. Soc. North Am. Inc.
,
23
(
3
), pp.
539
560
.10.1148/rg.233025121
154.
Panjabi
,
M. M.
,
Oxland
,
T. R.
,
Yamamoto
,
I.
, and
Crisco
,
J. J.
,
1994
, “
Mechanical Behavior of the Human Lumbar and Lumbosacral Spine as Shown by Three-Dimensional Load-Displacement Curves
,”
J. Bone Jt. Surg. Am.
,
76
(
3
), pp.
413
424
.10.2106/00004623-199403000-00012
155.
Yamamoto
,
I.
,
Panjabi
,
M. M.
,
Crisco
,
T.
, and
Oxland
,
T.
,
1989
, “
Three-Dimensional Movements of the Whole Lumbar Spine and Lumbosacral Joint
,”
Spine
,
14
, pp.
1256
1260
.10.1097/00007632-198911000-00020
156.
Oxland
,
T. R.
,
Lin
,
R. M.
, and
Panjabi
,
M. M.
,
1992
, “
Three-Dimensional Mechanical Properties of the Thoracolumbar Junction
,”
J. Orthop. Res. Off. Publ. Orthop. Res. Soc.
,
10
(
4
), pp.
573
580
.10.1002/jor.1100100412
157.
Lysack
,
J. T.
,
Dickey
,
J. P.
,
Dumas
,
G. A.
, and
Yen
,
D.
,
2000
, “
A Continuous Pure Moment Loading Apparatus for Biomechanical Testing of Multi-Segment Spine Specimens
,”
J. Biomech.
,
33
(
6
), pp.
765
770
.10.1016/S0021-9290(00)00021-X
158.
Hofstetter
,
M.
,
Gédet
,
P.
,
Doherr
,
M.
,
Ferguson
,
S. J.
, and
Forterre
,
F.
,
2009
, “
Biomechanical Analysis of the Three-Dimensional Motion Pattern of the Canine Cervical Spine Segment C4-C5
,”
Vet. Surg.
,
38
(
1
), pp.
49
58
.10.1111/j.1532-950X.2008.00465.x
159.
Goertzen
,
D. J.
,
Lane
,
C.
, and
Oxland
,
T. R.
,
2004
, “
Neutral Zone and Range of Motion in the Spine Are Greater With Stepwise Loading Than With a Continuous Loading Protocol. An In Vitro Porcine Investigation
,”
J. Biomech.
,
37
(
2
), pp.
257
261
.10.1016/S0021-9290(03)00307-5
160.
Schöllhorn
,
B.
,
Bürki
,
A.
,
Stahl
,
C.
,
Howard
,
J.
, and
Forterre
,
F.
,
2013
, “
Comparison of the Biomechanical Properties of a Ventral Cervical Intervertebral Anchored Fusion Device With Locking Plate Fixation Applied to Cadaveric Canine Cervical Spines
,”
Vet. Surg.
,
42
, pp.
825
831
.10.1111/j.1532-950X.2013.12044.x
161.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Ghanayem
,
A. J.
,
Diener
,
H.
,
Meade
,
K. P.
,
Dunlap
,
B.
, and
Hodges
,
S. D.
,
1976
, “
Load-Carrying Capacity of the Human Cervical Spine in Compression is Increased Under a Follower Load
,”
Spine
,
25
(
2000
), pp.
1548
1554
.10.1097/00007632-200006150-00015
162.
Anderst
,
W. J.
,
Donaldson
,
W. F.
,
Lee
,
J. Y.
, and
Kang
,
J. D.
,
2013
, “
Subject-Specific Inverse Dynamics of the Head and Cervical Spine During In Vivo Dynamic Flexion-Extension
,”
ASME J. Biomech. Eng.
,
135
(
6
), p. 0
61007
.10.1115/1.4023524
163.
White
,
A.
,
1990
, Clinical Biomechanics of the Spine, 2nd ed., Lippincot Williams & Wilkins, Philadelphia, PA.
164.
Miyanji
,
F.
,
Mahar
,
A.
,
Oka
,
R.
, and
Newton
,
P.
,
2008
, “
Biomechanical Differences Between Transfacet and Lateral Mass Screw-Rod Constructs for Multilevel Posterior Cervical Spine Stabilization
,”
Spine
,
33
(
23
), pp.
865
869
.10.1097/BRS.0b013e318184ace8
You do not currently have access to this content.