Abstract

Step-by-step (SBS) stair navigation is used by those with movement limitations or lower-limb prosthetics and by humanoid robots. Knowledge of biomechanical parameters for SBS gait, however, is limited. Inverted pendulum (IP) models used to assess dynamic stability have not been applied to SBS gait. This study examined the ability of the linear inverted pendulum (LIP) model and a closed-form, variable-height inverted pendulum (VHIP) model to predict capture-point (CP) stability in healthy adults executing a single stair climb. A second goal was to provide baseline kinematic and kinetic data for SBS gait. Twenty young adults executed a single step onto stairs of two heights, while attached marker positions and ground reaction forces were recorded. opensim software determined body kinematics and joint kinetics. Trials were analyzed with LIP and VHIP models, and the predicted CP compared to the actual center-of-pressure (CoP) on the stair. Lower-limb joint moments were larger than those reported for step-over-step (SOS) stair gait. Leading knee rather than trailing ankle was dominant. Center-of-mass (CoM) velocity peaked at push-off. The VHIP model accounted for only slightly more than half of the forward progression of the vertical projection of the CoM and was not better than LIP predictions. This suggests that IP models are limited in modeling SBS gait, likely due to large hip and knee moments. The results from this study may also provide target values and strategies to aid design of lower-limb prostheses and powered exoskeletons.

References

1.
Startzell
,
J. K.
,
Owens
,
D. A.
,
Mulfinger
,
L. M.
, and
Cavanagh
,
P. R.
,
2000
, “
Stair Negotiation in Older People: A Review
,”
J. Am. Geriatr. Soc.
,
48
(
5
), pp.
567
580
.10.1111/j.1532-5415.2000.tb05006.x
2.
Andriacchi
,
T. P.
,
Andersson
,
G. B.
,
Fermier
,
R. W.
,
Stern
,
D.
, and
Galante
,
J. O.
,
1980
, “
A Study of Lower-Limb Mechanics During Stair-Climbing
,”
J. Bone Jt. Surg. Am.
,
62
(
5
), pp.
749
757
.10.2106/00004623-198062050-00008
3.
McFadyen
,
B. J.
, and
Winter
,
D. A.
,
1988
, “
An Integrated Biomechanical Analysis of Normal Stair Ascent and Descent
,”
J. Biomech.
,
21
(
9
), pp.
733
744
.10.1016/0021-9290(88)90282-5
4.
Zachazewski
,
J. E.
,
Riley
,
P. O.
, and
Krebs
,
D. E.
,
1993
, “
Biomechanical Analysis of Body Mass Transfer During Stair Ascent and Descent of Healthy Subjects
,”
J. Rehabil. Res. Dev.
,
30
(
4
), pp.
412
422
.https://pubmed.ncbi.nlm.nih.gov/8158557/#:~:text=The%20purposes%20of%20this%20study,on%20critical%20CM%2C%20CP%2C%20and
5.
Yu
,
B.
,
Kienbacher
,
T.
,
Growney
,
E. S.
,
Johnson
,
M. E.
, and
An
,
K.-N.
,
1997
, “
Reproducibility of the Kinematics and Kinetics of the Lower Extremity During Normal Stair-Climbing
,”
J. Orthop. Res.
,
15
(
3
), pp.
348
352
.10.1002/jor.1100150306
6.
Riener
,
R.
,
Rabuffetti
,
M.
, and
Frigo
,
C.
,
2002
, “
Stair Ascent and Descent at Different Inclinations
,”
Gait Posture
,
15
(
1
), pp.
32
44
.10.1016/S0966-6362(01)00162-X
7.
Costigan
,
P. A.
,
Deluzio
,
K. J.
, and
Wyss
,
U. P.
,
2002
, “
Knee and Hip Kinetics During Normal Stair Climbing
,”
Gait Posture
,
16
(
1
), pp.
31
37
.10.1016/S0966-6362(01)00201-6
8.
Protopapadaki
,
A.
,
Drechsler
,
W. I.
,
Cramp
,
M. C.
,
Coutts
,
F. J.
, and
Scott
,
O. M.
,
2007
, “
Hip, Knee, Ankle Kinematics and Kinetics During Stair Ascent and Descent in Healthy Young Individuals
,”
Clin. Biomech. (Bristol, Avon)
,
22
(
2
), pp.
203
210
.10.1016/j.clinbiomech.2006.09.010
9.
Momcilovic
,
M. M.
,
2010
, “
Joint Moments and Powers in Healthy Young Adults During Stair Negotiation
,”
M.S. thesis
,
University of Nebraska at Omaha
, Omaha, NE.https://digitalcommons.unomaha.edu/studentwork/12/
10.
Novak
,
A. C.
, and
Brouwer
,
B.
,
2011
, “
Sagittal and Frontal Lower Limb Joint Moments During Stair Ascent and Descent in Young and Older Adults
,”
Gait Posture
,
33
(
1
), pp.
54
60
.10.1016/j.gaitpost.2010.09.024
11.
Lin
,
H.
,
Lu
,
T.
, and
Hsu
,
H.
,
2005
, “
Comparisons of Joint Kinetics in the Lower Extremity Between Stair Ascent and Descent
,”
J. Mech.
,
21
(
1
), pp.
41
50
.10.1017/S1727719100000538
12.
Lamontagne
,
M.
,
Beaulieu
,
M. L.
, and
Beaulé
,
P. E.
,
2011
, “
Comparison of Joint Mechanics of Both Lower Limbs of THA Patients With Healthy Participants During Stair Ascent and Descent
,”
J. Orthop. Res.
,
29
(
3
), pp.
305
311
.10.1002/jor.21248
13.
Gates
,
D. H.
,
Lelas
,
J.
,
Della Croce
,
U.
,
Herr
,
H.
, and
Bonato
,
P.
,
2004
, “
Characterization of Ankle Function During Stair Ambulation
,”
Conference of the IEEE Engineering in Medicine and Biology Society
, San Francisco, CA, Sept. 1–4, pp.
4248
4251
.https://www.researchgate.net/publication/33680602_Characterization_of_ankle_function_during_stair_ambulation
14.
Hobara
,
H.
,
Kobayashi
,
Y.
,
Nakamura
,
T.
,
Yamasaki
,
N.
, and
Ogata
,
T.
,
2014
, “
Foot Clearance Strategy for Step-Over-Step Stair Climbing in Transfemoral Amputees
,”
Prosthet. Orthot. Int.
,
38
(
4
), pp.
332
335
.10.1177/0309364613497049
15.
Lura
,
D. J.
,
Wernke
,
M. W.
,
Carey
,
S. L.
,
Kahle
,
J. T.
,
Miro
,
R. M.
, and
Highsmith
,
M. J.
,
2017
, “
Crossover Study of Amputee Stair Ascent and Descent Biomechanics Using Genium and C-Leg Prostheses With Comparison to Non-Amputee Control
,”
Gait Posture
,
58
, pp.
103
107
.10.1016/j.gaitpost.2017.07.114
16.
Defense Advanced Research Projects Agency, 2020, “
DARPA Robotics Challenge
,” Defense Advanced Research Projects Agency, Arlington, VA, accessed Nov. 17, 2020, https://www.darpa.mil/program/darpa-robotics-challenge
17.
Hopkins
,
M. A.
,
Griffin
,
R. J.
,
Leonessa
,
A.
,
Lattimer
,
B. Y.
, and
Furukawa
,
T.
,
2015
, “
Design of a Compliant Bipedal Walking Controller for the DARPA Robotics Challenge
,”
IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids)
,
Seoul, South Korea, Nov. 3–5,
pp.
831
837
.10.1109/HUMANOIDS.2015.7363450
18.
Reid
,
S. M.
,
Lynn
,
S. K.
,
Musselman
,
R. P.
, and
Costigan
,
P. A.
,
2007
, “
Knee Biomechanics of Alternate Stair Ambulation Patterns
,”
Med. Sci. Sports Exercise
,
39
(
11
), pp.
2005
2011
.10.1249/mss.0b013e31814538c8
19.
Meireles
,
S.
,
Reeves
,
N. D.
,
Jones
,
R. K.
,
Smith
,
C. R.
,
Thelen
,
D. G.
, and
Jonkers
,
I.
,
2019
, “
Patients With Medial Knee Osteoarthritis Reduce Medial Knee Contact Forces by Altering Trunk Kinematics, Progression Speed, and Stepping Strategy During Stair Ascent and Descent: A Pilot Study
,”
J. Appl. Biomech.
,
35
(
4
), pp.
280
289
.10.1123/jab.2017-0159
20.
Winter
,
D.
,
1995
, “
Human Balance and Posture Control During Standing and Walking
,”
Gait Posture
,
3
(
4
), pp.
193
214
.10.1016/0966-6362(96)82849-9
21.
Kuo
,
A. D.
,
Donelan
,
J. M.
, and
Ruina
,
A.
,
2005
, “
Energetic Consequences of Walking Like an Inverted Pendulum: Step-to-Step Transitions
,”
Exercise Sport Sci. Rev.
,
33
(
2
), pp.
88
97
.10.1097/00003677-200504000-00006
22.
Kuo
,
A. D.
,
2007
, “
The Six Determinants of Gait and the Inverted Pendulum Analogy: A Dynamic Walking Perspective
,”
Hum. Mov. Sci.
,
26
(
4
), pp.
617
656
.10.1016/j.humov.2007.04.003
23.
McGrath
,
M.
,
Howard
,
D.
, and
Baker
,
R.
,
2015
, “
The Strengths and Weaknesses of Inverted Pendulum Models of Human Walking
,”
Gait Posture
,
41
(
2
), pp.
389
394
.10.1016/j.gaitpost.2014.10.023
24.
Komura
,
T.
,
Nagano
,
A.
,
Leung
,
H.
, and
Shinagawa
,
Y.
,
2005
, “
Simulating Pathological Gait Using the Enhanced Linear Inverted Pendulum Model
,”
IEEE Trans. Biomed. Eng.
,
52
(
9
), pp.
1502
1513
.10.1109/TBME.2005.851530
25.
Winter
,
D. A.
,
1995
,
A.B.C. (Anatomy, Biomechanics and Control) of Balance During Standing and Walking
,
Waterloo Biomechanics
,
Waterloo, ON, Canada
.
26.
Hof
,
A. L.
,
Gazendam
,
M. G.
, and
Sinke
,
W. E.
,
2005
, “
The Condition for Dynamic Stability
,”
J. Biomech.
,
38
(
1
), pp.
1
8
.10.1016/j.jbiomech.2004.03.025
27.
Hof
,
A. L.
,
2008
, “
The ‘Extrapolated Center of Mass’ Concept Suggests a Simple Control of Balance in Walking
,”
Hum. Mov. Sci.
,
27
(
1
), pp.
112
125
.10.1016/j.humov.2007.08.003
28.
Kajita
,
S.
, and
Tani
,
K.
,
1996
, “
Experimental Study of Biped Dynamic Walking
,”
IEEE Control Syst. Mag.
,
16
(
1
), pp.
13
19
.10.1109/37.482132
29.
Kajita
,
S.
,
Kanehiro
,
F.
, and
Kaneko
,
K.
,
2001
, “
The 3D Linear Inverted Pendulum Mode: A Simple Modeling for a Biped Walking Pattern Generation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Maui, HI, Oct. 29–Nov. 3, pp.
239
246
.10.1109/IROS.2001.973365
30.
Pratt
,
J.
,
Carff
,
J.
, and
Drakunov
,
S.
,
2006
, “
Capture Point: A Step Toward Humanoid Push Recovery
,”
Sixth IEEE-RAS International Conference on Humanoid Robots
, Genova, Italy, Dec. 4–6, pp.
200
207
.10.1109/ICHR.2006.321385
31.
Koolen
,
T.
,
de Boer
,
T.
,
Rebula
,
J.
,
Goswami
,
A.
, and
Pratt
,
J.
,
2012
, “
Capturability-Based Analysis and Control of Legged Locomotion—Part I: Theory and Application to Three Simple Gait Models
,”
Int. J. Rob. Res.
,
31
(
9
), pp.
1094
1113
.10.1177/0278364912452673
32.
Pratt
,
J.
,
Koolen
,
T.
,
de Boer
,
T.
,
Rebula
,
J.
,
Cotton
,
S.
,
Carff
,
J.
,
Johnson
,
M.
, and
Neuhaus
,
P.
,
2012
, “
Capturability-Based Analysis and Control of Legged Locomotion—Part II: Application to M2V2, a Lower-Body Humanoid
,”
Int. J. Rob. Res.
,
31
(
10
), pp.
1117
1133
.10.1177/0278364912452762
33.
Stephens
,
B.
,
2007
, “
Humanoid Push Recovery
,”
Seventh IEEE-RAS International Conference on Humanoid Robots
, Pittsburgh, PA, Nov. 29–Dec. 1, pp.
589
595
.10.1109/ICHR.2007.4813931
34.
Stephens
,
B. J.
,
2011
, “
Push Recovery Control for Force-Controlled Humanoid Robots
,”
Ph.D. dissertation
,
Carnegie Mellon University
,
Pittsburgh, PA
. https://www.cs.cmu.edu/~bstephe1/papers/thesis.pdf
35.
Englsberger
,
J.
,
Ott
,
C.
,
Roa
,
M.
,
Albu-Schaffer
,
A.
, and
Hirzinger
,
G.
,
2011
, “
Bipedal Walking Control Based on Capture Point Dynamics
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, San Francisco, CA, Sept. 25–30, pp.
4420
4427
.10.1109/IROS.2011.6094435
36.
de Boer
,
T.
,
2012
, “
Foot Placement in Robotic Bipedal Locomotion
,”
Ph.D. dissertation
,
Delft University of Technology
,
Delft, The Netherlands
.https://repository.tudelft.nl/islandora/object/uuid:795fa8f5-84a0-4673-810c-a8265e29791c/datastream/OBJ/download
37.
Aftab
,
Z.
,
Wieber
,
P.
, and
Robert
,
T.
,
2010
, “
Comparison of Capture Point Estimation With Human Foot Placement: Applicability and Limitations
,”
5èmes Journées Nationales de la Robotique Humanoïde
, Poitier, France, June 3–4.https://www.researchgate.net/publication/44449963_Comparison_of_Capture_Point_estimation_with_human_foot_placement_Applicability_and_Limitations
38.
Buffinton
,
C.
,
Buffinton
,
E. M.
,
Bieryla
,
K. A.
, and
Pratt
,
J. E.
,
2016
, “
Biomechanics of Step Initiation After Balance Recovery With Implications for Humanoid Robot Locomotion
,”
ASME J. Biomech. Eng.
,
138
(
3
), p.
031001
.10.1115/1.4032468
39.
Pratt
,
J. E.
, and
Drakunov
,
S. V.
,
2007
, “
Derivation and Application of a Conserved Orbital Energy for the Inverted Pendulum Bipedal Walking Model
,”
IEEE International Conference on Robotics and Automation
,
Rome
, Italy, Apr. 10–14, pp.
4653
4660
.10.1109/ROBOT.2007.364196
40.
Koolen
,
T.
,
Posa
,
M.
, and
Tedrake
,
R.
,
2016
, “
Balance Control Using Center of Mass Height Variation: Limitations Imposed by Unilateral Contact
,”
IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids)
, Cancun, Mexico, Nov. 15–17, pp.
8
15
.10.1109/HUMANOIDS.2016.7803247
41.
Posa
,
M.
,
Koolen
,
T.
, and
Tedrake
,
R.
,
2017
, “
Balancing and Step Recovery Capturability Via Sums-of-Squares Optimization
,”
Robotics: Science and Systems
, Boston, MA, July 12–16.http://groups.csail.mit.edu/robotics-center/public_papers/Posa17.pdf
42.
Hopkins
,
M. A.
,
Leonessa
,
A.
, and
Hong
,
D. W.
,
2014
, “
Humanoid Locomotion on Uneven Terrain Using the Time-Varying Divergent Component of Motion
,”
IEEE-RAS International Conference on Humanoid Robots (Humanoids)
,
Madrid
, Spain, Nov. 18–20, pp.
266
272
.10.1109/HUMANOIDS.2014.7041371
43.
Ramos
,
O. E.
, and
Hauser
,
K.
,
2015
, “
Generalizations of the Capture Point to Nonlinear Center of Mass Paths and Uneven Terrain
,”
IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids)
, Seoul, South Korea, Nov. 3–5, pp.
851
858
.10.1109/HUMANOIDS.2015.7363461
44.
Caron
,
S.
, and
Mallein
,
B.
,
2018
, “
Balance Control Using Both ZMP and COM Height Variations: A Convex Boundedness Approach
,” IEEE International Conference on Robotics and Automation (
ICRA
), Brisbane, QLD, Australia, May 21–25, pp.
1779
1784
.10.1109/ICRA.2018.8460942
45.
Caron
,
S.
,
Kheddar
,
A.
, and
Tempier
,
O.
,
2019
, “
Stair Climbing Stabilization of the HRP-4 Humanoid Robot Using Whole-Body Admittance Control
,” International Conference on Robotics and Automation (
ICRA
), Montreal, QC, Canada, May 20–24, pp.
277
283
.10.1109/ICRA.2019.8794348
46.
Caron
,
S.
,
Escande
,
A.
,
Lanari
,
L.
, and
Mallein
,
B.
,
2020
, “
Capturability-Based Pattern Generation for Walking With Variable Height
,”
IEEE Trans. Rob.
,
36
(
2
), pp.
517
536
.10.1109/TRO.2019.2923971
47.
Garcia-Chavez
,
G.
,
2019
, “
A Control Approach for the Variable-Height Inverted Pendulum Based on Sliding Mode Control With Input Saturation
,”
IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)
, Toronto, ON, Canada, Oct. 15–17, pp.
208
214
.10.1109/Humanoids43949.2019.9035056
48.
Ames
,
A.
,
2014
, “
Human-Inspired Control of Bipedal Walking Robots
,”
IEEE Trans. Autom. Control
,
59
(
5
), pp.
1115
1130
.10.1109/TAC.2014.2299342
49.
Dariush
,
B.
,
Gienger
,
M.
,
Jian
,
B.
,
Goerick
,
C.
, and
Fujimura
,
K.
,
2008
, “
Whole Body Humanoid Control From Human Motion Descriptors
,”
IEEE International Conference on Robotics and Automation
, Pasadena, CA, May 19–23, pp.
2677
2684
.10.1109/ROBOT.2008.4543616
50.
Sreenivasa
,
M.
,
Soueres
,
P.
, and
Laumond
,
J.
,
2012
, “
Walking to Grasp: Modeling of Human Movements as Invariants and an Application to Humanoid Robotics
,”
IEEE Trans. Syst., Man, Cybern. A: Syst. Hum.
,
42
(
4
), pp.
880
893
.10.1109/TSMCA.2011.2178830
51.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
52.
National Center for Simulation in Rehabilitation Research, 2010, “OpenSim Community,” National Center for Simulation in Rehabilitation Research, Stanford, CA, accessed Dec. 15, 2020, https://opensim.stanford.edu/about/
53.
National Center for Simulation in Rehabilitation Research, 2020, “
Gait 2392 and 2354 Models
,” National Center for Simulation in Rehabilitation Research, Stanford, CA, accessed Dec. 15, 2020, https://simtk-confluence.stanford.edu/display/OpenSim/Gait+2392+and+2354+Models
54.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
,
1990
, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
,
37
(
8
), pp.
757
767
.10.1109/10.102791
55.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
1999
, “
A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions
,”
Comput. Methods Biomech. Biomed. Eng.
,
2
(
3
), pp.
201
231
.10.1080/10255849908907988
56.
Yamaguchi
,
G. T.
, and
Zajac
,
F. E.
,
1989
, “
A Planar Model of the Knee Joint to Characterize the Knee Extensor Mechanism
,”
J. Biomech.
,
22
(
1
), pp.
1
10
.10.1016/0021-9290(89)90179-6
57.
Inman
,
V. T.
,
1976
,
The Joints of the Ankle
,
Williams & Wilkins
,
Baltimore, MD
, p.
117
.
58.
Bedo, B. L. S., Mantoan
,
A.
, Catelli, D. S., Cruaud, W.,
Reggiani
,
M., and Lamontagne, M., 2021,
“BOPS: A Matlab Toolbox to Bath Musculoskeletal Data Processing for OpenSim,”
Comput. Methods Biomech. Biomed. Engin.
, pp. 1–11. 10.1080/10255842.2020.1867978
59.
National Center for Simulation in Rehabilitation Research, 2020, “
How Inverse Kinematics Works
,” National Center for Simulation in Rehabilitation Research, Stanford, CA, accessed Dec. 15, 2020, https://simtk-confluence.stanford.edu/display/OpenSim/How+Inverse+Kinematics+Works
60.
Keller
,
T. S.
,
Weisberger
,
A. M.
,
Ray
,
J. L.
,
Hasan
,
S. S.
,
Shiavi
,
R. G.
, and
Spengler
,
D. M.
,
1996
, “
Relationship Between Vertical Ground Reaction Force and Speed During Walking, Slow Jogging, and Running
,”
Clin. Biomech. (Bristol, Avon)
,
11
(
5
), pp.
253
259
.10.1016/0268-0033(95)00068-2
61.
Shiomi
,
T.
,
1994
, “
Effects of Different Patterns of Stairclimbing on Physiological Cost and Motor Efficiency
,”
J. Hum. Ergol. (Tokyo)
,
23
(
2
), pp.
111
120
.https://pubmed.ncbi.nlm.nih.gov/7730596/#:~:text=The%20results%20showed%20that%20VO2,proportion%20to%20the%20stepping%20rates.
62.
Kasaei
,
S. M. M.
,
Lau
,
N.
, and
Pereira
,
A.
,
2019
, “
Comparison Study of Well-Known Inverted Pendulum Models for Balance Recovery in Humanoid Robot
,”
MAPiS 2019
, Aveiro, Portugal, Jan. 31.https://www.researchgate.net/publication/330912454_Comparison_Study_of_Well-Known_Inverted_Pendulum_Models_for_Balance_Recovery_in_Humanoid_Robot
63.
Zelik
,
K. E.
, and
Adamczyk
,
P. G.
,
2016
, “
A Unified Perspective on Ankle Push-Off in Human Walking
,”
J. Exp. Biol.
,
219
(
23
), pp.
3676
3683
.10.1242/jeb.140376
You do not currently have access to this content.