Abstract

The cervical spine experiences shear forces during everyday activities and injurious events yet there is a paucity of biomechanical data characterizing the cervical spine under shear loading. This study aimed to (1) characterize load transmission paths and kinematics of the subaxial cervical spine under shear loading, and (2) assess a contemporary finite element cervical spine model using this data. Subaxial functional spinal units (FSUs) were subjected to anterior, posterior, and lateral shear forces (200 N) applied with and without superimposed axial compression preload (200 N) while monitoring spine kinematics. Load transmission paths were identified using strain gauges on the anterior vertebral body and lateral masses and a disc pressure sensor. Experimental conditions were simulated with cervical spine finite element model FSUs (GHBMC M50 version 5.0). The mean kinematics, vertebral strains, and disc pressures were compared to experimental results. The shear force–displacement response typically demonstrated a toe region followed by a linear response, with higher stiffness in anterior shear relative to lateral and posterior shear. Compressive axial preload decreased posterior and lateral shear stiffness and increased initial anterior shear stiffness. Load transmission patterns and kinematics suggest the facet joints play a key role in limiting anterior shear while the disc governs motion in posterior shear. The main cervical spine shear responses and trends are faithfully predicted by the GHBMC cervical spine model. These basic cervical spine biomechanics and the computational model can provide insight into mechanisms for facet dislocation in high severity impacts, and tissue distraction in low severity impacts.

References

1.
Ivancic
,
P. C.
,
2012
, “
Head-First Impact With Head Protrusion Causes Noncontiguous Injuries of the Cadaveric Cervical Spine
,”
Clin. J. Sport Med. Off. J. Can. Acad. Sport Med.
,
22
(
5
), pp.
390
396
.10.1097/JSM.0b013e3182686789
2.
Nightingale
,
R. W.
,
Sganga
,
J.
,
Cutcliffe
,
H.
, and
Bass
,
C. R.
,
2016
, “
Impact Responses of the Cervical Spine: A Computational Study of the Effects of Muscle Activity, Torso Constraint, and Pre-Flexion
,”
J. Biomech.
,
49
(
4
), pp.
558
564
.10.1016/j.jbiomech.2016.01.006
3.
Siegmund
,
G. P.
,
Myers
,
B. S.
,
Davis
,
M. B.
,
Bohnet
,
H. F.
, and
Winkelstein
,
B. A.
,
2001
, “
Mechanical Evidence of Cervical Facet Capsule Injury During Whiplash: A Cadaveric Study Using Combined Shear, Compression, and Extension Loading
,”
Spine
,
26
(
19
), pp.
2095
2101
.10.1097/00007632-200110010-00010
4.
Ivancic
,
P. C.
,
Panjabi
,
M. M.
, and
Ito
,
S.
,
2006
, “
Cervical Spine Loads and Intervertebral Motions During Whiplash
,”
Traffic Inj. Prev.
,
7
(
4
), pp.
389
399
.10.1080/15389580600789127
5.
Li
,
Y.
,
Bishop
,
P. J.
,
Wells
,
R. P.
, and
McGill
,
S. M.
,
1991
, “
A Quasi-Static Analytical Sagittal Plane Model of the Cervical Spine in Extension and Compression
,”
SAE
Technical Paper No. 912917.10.4271/912917
6.
Moroney
,
S. P.
,
Schultz
,
A. B.
, and
Miller
,
J. A. A.
,
1988
, “
Analysis and Measurement of Neck Loads
,”
J. Orthop. Res.
,
6
(
5
), pp.
713
720
.10.1002/jor.1100060514
7.
Tencer
,
A. F.
,
Mirza
,
S.
, and
Bensel
,
K.
,
2002
, “
Internal Loads in the Cervical Spine During Motor Vehicle Rear-End Impacts: The Effect of Acceleration and Head-to-Head Restraint Proximity
,”
Spine
,
27
(
1
), pp.
34
42
.10.1097/00007632-200201010-00010
8.
Panjabi
,
M. M.
, ;
Summers
,
D. J.
, ;
Pelker
,
R. R.
, ;
Videman
,
T.
, ;
Friedlaender
,
G. E.
, and
Southwick
,
W. O.
,
1986
, “
Three-Dimensional Load-Displacement Curves Due to Forces on the Cervical Spine
,”
J. Orthop. Res.
,
4
(
2
), pp.
152
161
.10.1002/jor.1100040203
9.
Moroney
,
S. P.
,
Schultz
,
A. B.
,
Miller
,
J. A. A.
, and
Andersson
,
G. B. J.
,
1988
, “
Load-Displacement Properties of Lower Cervical Spine Motion Segments
,”
J. Biomech.
,
21
(
9
), pp.
769
779
.10.1016/0021-9290(88)90285-0
10.
Shea
,
M.
,
Edwards
,
W. T.
,
White
,
A. A.
, and
Hayes
,
W. C.
,
1991
, “
Variations of Stiffness and Strength Along the Human Cervical Spine
,”
J. Biomech.
,
24
(
2
), pp.
95
107
.10.1016/0021-9290(91)90354-P
11.
Siegmund
,
G. P.
,
Myers
,
B. S.
,
Davis
,
M. B.
,
Bohnet
,
H. F.
, and
Winkelstein
,
B. A.
,
2000
, “
Human Cervical Motion Segment Flexibility and Facet Capsular Ligament Strain Under Combined Posterior Shear, Extension and Axial Compression
,”
Stapp Car Crash J.
,
44
, pp.
159
170
.10.4271/2000-01-SC12
12.
Dowling-Medley
,
J. J.
,
Doodkorte
,
R. J.
,
Melnyk
,
A. D.
,
Cripton
,
P. A.
, and
Oxland
,
T. R.
,
2020
, “
Shear Stiffness in the Lower Cervical Spine: Effect of Sequential Posterior Element Injury
,”
Proc. Inst. Mech. Eng., Part H
,
234
(
2
), pp.
141
147
.10.1177/0954411919889194
13.
Cripton
,
P. A.
,
Berlemann
,
U.
,
Visarius
,
H.
,
Begeman
,
P.
, and
Prasad
,
P.
,
1995
, “
Response of the Lumbar Spine Due to Shear Loading
,”
SAE
Paper No. 950662.10.4271/950662
14.
Liu
,
Y. K.
,
Ray
,
G.
, and
Hirsch
,
C.
,
1975
, “
The Resistance of the Lumbar Spine to Direct Shear
,”
Orthop. Clin. North Am.
,
6
(
1
), pp.
33
48
.10.1016/S0030-5898(20)31198-6
15.
Panjabi
,
M. M.
,
White
,
A. A.
, and
Johnson
,
R. M.
,
1975
, “
Cervical-Spine Mechanics as a Function of Transection of Components
,”
J. Biomech.
,
8
(
5
), pp.
327
336
.10.1016/0021-9290(75)90085-8
16.
Yang
,
K.
,
Begeman
,
P.
,
Muser
,
M.
,
Niederer
,
P.
, and
Walz
,
F.
,
1997
, “
On the Role of Cervical Facet Joints in Rear End Impact Neck Injury Mechanisms
,”
SAE
Technical Paper No. 970497.10.4271/970497
17.
Cronin
,
D.
,
Singh
,
D.
,
Gierczycka
,
D.
,
Barker
,
J.
, and
Shen
,
D.
,
2018
, “
Modeling the Neck for Impact Scenarios
,”
Basic Finite Element Method and Analysis as Applied to Injury Biomechanics
,
K.
Yang
, ed.,
Elsevier
,
London, UK
, Chap.
13
.
18.
Goel
,
V. K.
, and
Clausen
,
J. D.
,
1998
, “
Prediction of Load Sharing Among Spinal Components of a C5-C6 Motion Segment Using the Finite Element Approach
,”
Spine
,
23
(
6
), pp.
684
691
.10.1097/00007632-199803150-00008
19.
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
1999
, “
Finite Element Analysis of the Cervical Spine: A Material Property Sensitivity Study
,”
Clin. Biomech.
,
14
(
1
), pp.
41
53
.10.1016/S0268-0033(98)00036-9
20.
Panzer
,
M. B.
, and
Cronin
,
D. S.
,
2009
, “
C4–C5 Segment Finite Element Model Development, Validation, and Load-Sharing Investigation
,”
J. Biomech.
,
42
(
4
), pp.
480
490
.10.1016/j.jbiomech.2008.11.036
21.
Mustafy
,
T.
,
El-Rich
,
M.
,
Mesfar
,
W.
, and
Moglo
,
K.
,
2014
, “
Investigation of Impact Loading Rate Effects on the Ligamentous Cervical Spinal Load-Partitioning Using Finite Element Model of Functional Spinal Unit C2–C3
,”
J. Biomech.
,
47
(
12
), pp.
2891
2903
.10.1016/j.jbiomech.2014.07.016
22.
Barker
,
J. B.
,
Cronin
,
D. S.
, and
Nightingale
,
R. W.
,
2017
, “
Lower Cervical Spine Motion Segment Computational Model Validation: Kinematic and Kinetic Response for Quasi-Static and Dynamic Loading
,”
ASME J. Biomech. Eng.
,
139
(
6
), p. 061009.10.1115/1.4036464
23.
Ng
,
H. W.
,
Teo
,
E. C.
, and
Lee
,
V. S.
,
2004
, “
Statistical Factorial Analysis on the Material Property Sensitivity of the Mechanical Responses of the C4–C6 Under Compression, Anterior and Posterior Shear
,”
J. Biomech.
,
37
(
5
), pp.
771
777
.10.1016/j.jbiomech.2003.09.025
24.
Barker
,
J.
, and
Cronin
,
D.
,
2020
, “
Multi-Level Validation of a Male Neck Finite Element Model With Active Musculature
,”
ASME J. Biomech. Eng.
, 143(1), p. 011004.10.1115/1.4047866
25.
Cronin
,
D. S.
,
2014
, “
Finite Element Modeling of Potential Cervical Spine Pain Sources in Neutral Position Low Speed Rear Impact
,”
J. Mech. Behav. Biomed. Mater.
,
33
, pp.
55
66
.10.1016/j.jmbbm.2013.01.006
26.
Cripton
,
P. A.
,
Dumas
,
G. A.
, and
Nolte
,
L.
,
2001
, “
A Minimally Disruptive Technique for Measuring Intervertebral Disc Pressure In Vitro: Application to the Cervical Spine
,”
J.Biomech.
,
34
(
4
), pp.
545
549
.10.1016/S0021-9290(00)00205-0
27.
Pelker
,
R. R.
,
Duranceau
,
J. S.
, and
Panjabi
,
M. M.
,
1991
, “
Cervical Spine Stabilization. A Three-Dimensional, Biomechanical Evaluation of Rotational Stability, Strength, and Failure Mechanisms
,”
Spine
,
16
(
2
), pp.
117
122
.10.1097/00007632-199116020-00003
28.
Panjabi
,
M. M.
,
1988
, “
Biomechanical Evaluation of Spinal Fixation Devices: I. A Conceptual Framework
,”
Spine
,
13
(
10
), pp.
1129
1134
.10.1097/00007632-198810000-00013
29.
Small
,
C. F.
,
Bryant
,
J. T.
, and
Pichora
,
D. R.
,
1992
, “
Rationalization of Kinematic Descriptors for Three-Dimensional Hand and Finger Motion
,”
ASME J. Biomed. Eng.
,
14
(
2
), pp.
133
141
.10.1016/0141-5425(92)90018-G
30.
Cripton
,
P. A.
,
Sati
,
M.
,
Orr
,
T. E.
,
Bourquin
,
Y.
,
Dumas
,
G. A.
, and
Nolte
,
L. P.
,
2001
, “
Animation of In Vitro Biomechanical Tests
,”
J. Biomech.
,
34
(
8
), pp.
1091
1096
.10.1016/S0021-9290(01)00054-9
31.
Lieber
,
R. L.
,
1994
, “
Experimental Design and Statistical Analysis
,”
Orthopaedic Basic Science
,
American Academy of Orthopaedic Surgeons
,
Rosemont, IL
.
32.
Siegmund
,
G. P.
,
Winkelstein
,
B. A.
,
Ivancic
,
P. C.
,
Svensson
,
M. Y.
, and
Vasavada
,
A.
,
2009
, “
The Anatomy and Biomechanics of Acute and Chronic Whiplash Injury
,”
Traffic Inj. Prev.
,
10
(
2
), pp.
101
112
.10.1080/15389580802593269
33.
Siegmund
,
G. P.
,
Davis
,
M. B.
,
Quinn
,
K. P.
,
Hines
,
E.
,
Myers
,
B. S.
,
Ejima
,
S.
,
Ono
,
K.
,
Kamiji
,
K.
,
Yasuki
,
T.
, and
Winkelstein
,
B. A.
,
2008
, “
Head-Turned Postures Increase the Risk of Cervical Facet Capsule Injury During Whiplash
,”
Spine
,
33
(
15
), pp.
1643
1649
.10.1097/BRS.0b013e31817b5bcf
34.
Buttermann
,
G. R.
,
Kahmann
,
R. D.
,
Lewis
,
J. L.
, and
Bradford
,
D. S.
,
1991
, “
An Experimental Method for Measuring Force on the Spinal Facet Joint: Description and Application of the Method
,”
ASME J. Biomech. Eng.
,
113
(
4
), pp.
375
386
.10.1115/1.2895415
35.
Pintar
,
F. A.
,
Yoganandan
,
N.
,
Pesigan
,
M.
,
Reinartz
,
J.
,
Sances
,
A.
, Jr.
, and
Cusick
,
J. F.
,
1995
, “
Cervical Vertebral Strain Measurements Under Axial and Eccentric Loading
,”
ASME J. Biomech. Eng.
,
117
(
4
), pp.
474
478
.10.1115/1.2794210
36.
Whyte
,
T.
,
Melnyk
,
A. D.
,
Van Toen
,
C.
,
Yamamoto
,
S.
,
Street
,
J.
,
Oxland
,
T. R.
, and
Cripton
,
P. A.
,
2020
, “
A Neck Compression Injury Criterion Incorporating Lateral Eccentricity
,”
Sci. Rep.
,
10
(
1
), p.
7114
.10.1038/s41598-020-63974-w
37.
Panjabi
,
M. M.
,
Oxland
,
T. R.
, and
Parks
,
E. H.
,
1991
, “
Quantitative Anatomy of the Cervical Spine Ligaments—Part II: Middle and Lower Cervical Spine
,”
J. Spinal Disord.
,
4
(
3
), pp.
277
285
.10.1097/00002517-199109000-00004
38.
Panjabi
,
M. M.
,
Duranceau
,
J.
,
Goel
,
V. K.
,
Oxland
,
T. R.
, and
Takata
,
K.
,
1991
, “
Cervical Human Vertebrae: Quantitative Three-Dimensional Anatomy of the Middle and Lower Regions
,”
Spine
,
16
(
8
), pp.
861
869
.10.1097/00007632-199108000-00001
39.
Van Toen
,
C.
,
Melnyk
,
A. D.
,
Street
,
J.
,
Oxland
,
T. R.
, and
Cripton
,
P. A.
,
2014
, “
The Effect of Lateral Eccentricity on Failure Loads, Kinematics, and Canal Occlusions of the Cervical Spine in Axial Loading
,”
J. Biomech.
,
47
(
5
), pp.
1164
1172
.10.1016/j.jbiomech.2013.12.001
40.
Melnyk
,
A.
,
Whyte
,
T.
,
Thomson
,
V.
,
Marion
,
T.
,
Yamamoto
,
S.
,
Street
,
J.
,
Oxland
,
T. R.
, and
Cripton
,
P. A.
,
2020
, “
The Effect of Compression Applied Through Constrained Lateral Eccentricity on the Failure Mechanics and Flexibility of the Human Cervical Spine
,”
ASME J. Biomech. Eng.
,
142
(
10
), p.
101005
.10.1115/1.4047342
41.
Kettler
,
A.
,
Werner
,
K.
, and
Wilke
,
H.-J.
,
2007
, “
Morphological Changes of Cervical Facet Joints in Elderly Individuals
,”
Eur. Spine J.
,
16
(
7
), pp.
987
992
.10.1007/s00586-006-0275-9
42.
Papadakis
,
M.
,
Sapkas
,
G.
,
Papadopoulos
,
E. C.
, and
Katonis
,
P.
,
2011
, “
Pathophysiology and Biomechanics of the Aging Spine
,”
Open Orthop. J.
,
5
(
1
), pp.
335
342
.10.2174/1874325001105010335
You do not currently have access to this content.