Abstract

The use of computational modeling to investigate knee joint biomechanics has increased exponentially over the last few decades. Developing computational models is a creative process where decisions have to be made, subject to the modelers' knowledge and previous experiences, resulting in the “art” of modeling. The long-term goal of the KneeHub project is to understand the influence of subjective decisions on the final outcomes and the reproducibility of computational knee joint models. In this paper, we report on the model development phase of this project, investigating model development decisions and deviations from initial modeling plans. Five teams developed computational knee joint models from the same dataset, and we compared each teams' initial uncalibrated models and their model development workflows. Variations in the software tools and modeling approaches were found, resulting in differences such as the representation of the anatomical knee joint structures in the model. The teams consistently defined the boundary conditions and used the same anatomical coordinate system convention. However, deviations in the anatomical landmarks used to define the coordinate systems were present, resulting in a large spread in the kinematic outputs of the uncalibrated models. The reported differences and similarities in model development and simulation presented here illustrate the importance of the “art” of modeling and how subjective decision-making can lead to variation in model outputs. All teams deviated from their initial modeling plans, indicating that model development is a flexible process and difficult to plan in advance, even for experienced teams.

References

1.
Erdemir
,
A.
,
Besier
,
T. F.
,
Halloran
,
J. P.
,
Imhauser
,
C. W.
,
Laz
,
P. J.
,
Morrison
,
T. M.
, and
Shelburne
,
K. B.
,
2019
, “
Deciphering the “Art” in Modeling and Simulation of the Knee Joint: Overall Strategy
,”
ASME J. Biomech. Eng.
,
141
(
7
), p.
0710021
.10.1115/1.4043346
2.
Baker
,
M.
,
2016
, “
Is There a Reproducibility Crisis?
,”
Nature
,
533
(
7604
), pp.
452
454
.10.1038/533452a
3.
Goodman
,
S. N.
,
Fanelli
,
D.
, and
Ioannidis
,
J. P.
,
2016
, “
What Does Research Reproducibility Mean?
,”
Sci. Transl. Med.
,
8
(
341
), p.
341ps12
.10.1126/scitranslmed.aaf5027
4.
Harris
,
M. D.
,
Cyr
,
A. J.
,
Ali
,
A. A.
,
Fitzpatrick
,
C. K.
,
Rullkoetter
,
P. J.
,
Maletsky
,
L. P.
, and
Shelburne
,
K. B.
,
2016
, “
A Combined Experimental and Computational Approach to Subject-Specific Analysis of Knee Joint Laxity
,”
ASME J. Biomech. Eng.
,
138
(
8
), p.
081004
.10.1115/1.4033882
5.
Ali
,
A. A.
,
Shalhoub
,
S. S.
,
Cyr
,
A. J.
,
Fitzpatrick
,
C. K.
,
Maletsky
,
L. P.
,
Rullkoetter
,
P. J.
, and
Shelburne
,
K. B.
,
2016
, “
Validation of Predicted Patellofemoral Mechanics in a Finite Element Model of the Healthy and Cruciate-Deficient Knee
,”
J. Biomech.
,
49
(
2
), pp.
302
309
.10.1016/j.jbiomech.2015.12.020
6.
Bennetts
,
C. J.
,
Chokhandre
,
S.
,
Donnola
,
S. B.
,
Flask
,
C. A.
,
Bonner
,
T. F.
,
Colbrunn
,
R. W.
, and
Erdemir
,
A.
,
2015
, “
Open Knee(s): Magnetic Resonance Imaging for Specimen-Specific Next Generation Knee Models
,”
SB3C2015, Summer Biomechanics, Bioengineering and Biotransport Conference
, Snowbird,
Utah
, June 17–20, Paper No. SB³C2015-581.
7.
Bonner
,
T. F.
,
Colbrunn
,
R. W.
,
Chokhandre
,
S.
,
Bennetts
,
C.
, and
Erdemir
,
A.
,
2015
, “
Open Knee(s): Comprehensive Tibiofemoral Joint Testing for Specimen-Specific Next Generation Knee Models
,”
SB3C2015, Summer Biomechanics, Bioengineering and Biotransport Conference
, Snowbird,
Utah
, June 17–20, Poster 98.
8.
Colbrunn
,
R. W.
,
Bonner
,
T. F.
,
Chokhandre
,
S. K.
,
Bennetts
,
C. J.
,
Halloran
,
J.
, and
Erdemir
,
A.
,
2015
, “
Open Knee(s): Comprehensive Patellofemoral Joint Testing for Specimen-Specific Next Generation Knee Models
,”
ASB, 39th Annual Meeting of the American Society of Biomechanics
,
Columbus, OH
, Aug. 5–8, Paper No. PD1D_1.
9.
Erdemir
,
A.
,
Bennetts
,
C.
,
Bonner
,
T.
,
Chokhandre
,
S. K.
, and
Colbrunn
,
R. W.
,
2015
, “
Open Knee(s): Founding Data for Next Generation Knee Models
,”
BMES/FDA, Frontiers in Medical Devices Conference: Innovations in Modeling and Simulation
,
Washington, DC
, May 18–20.
10.
Rooks
,
N. B.
,
Schneider
,
M. T. Y.
,
Erdemir
,
A.
,
Halloran
,
J. P.
,
Laz
,
P. J.
,
Shelburne
,
K. B.
,
Hume
,
D. R.
,
Imhauser
,
C. W.
,
Zaylor
,
W.
,
Elmasry
,
S.
,
Schwartz
,
A.
,
Chokhandre
,
S. K.
,
Abdollahi
,
N.
, and
Besier
,
T. F.
,
2021
, “
A Method to Compare Heterogeneous Types of Bone and Cartilage Meshes
,” KneeHub SimTK, accessed Jan. 20, 2021, https://simtk.org/svn/kneehub/doc/JBME-2021-MD-MESH/
11.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
12.
Kiapour
,
A. M.
,
Kaul
,
V.
,
Kiapour
,
A.
,
Quatman
,
C. E.
,
Wordeman
,
S. C.
,
Hewett
,
T. E.
,
Demetropoulos
,
C. K.
, and
Goel
,
V. K.
,
2013
, “
The Effect of Ligament Modeling Technique on Knee Joint Kinematics: A Finite Element Study
,”
Appl. Math. (Irvine)
,
04
(
05
), pp.
91
97
.10.4236/am.2013.45A011
13.
Beidokhti
,
H. N.
,
Janssen
,
D.
,
van de Groes
,
S.
,
Hazrati
,
J.
,
Van den Boogaard
,
T.
, and
Verdonschot
,
N.
,
2017
, “
The Influence of Ligament Modelling Strategies on the Predictive Capability of Finite Element Models of the Human Knee Joint
,”
J. Biomech.
,
65
, pp.
1
11
.10.1016/j.jbiomech.2017.08.030
14.
Anderst
,
W. J.
, and
Tashman
,
S.
,
2003
, “
A Method to Estimate In Vivo Dynamic Articular Surface Interaction
,”
J. Biomech.
,
36
(
9
), pp.
1291
1299
.10.1016/S0021-9290(03)00157-X
15.
Fernandez
,
J. W.
,
Akbarshahi
,
M.
,
Kim
,
H. J.
, and
Pandy
,
M. G.
,
2008
, “
Integrating Modelling, Motion Capture and X-Ray Fluoroscopy to Investigate Patellofemoral Function During Dynamic Activity
,”
Comput. Method Biomech.
,
11
(
1
), pp.
41
53
.10.1080/10255840701551046
16.
Miranda
,
D. L.
,
Rainbow
,
M. J.
,
Leventhal
,
E. L.
,
Crisco
,
J. J.
, and
Fleming
,
B. C.
,
2010
, “
Automatic Determination of Anatomical Coordinate Systems for Three-Dimensional Bone Models of the Isolated Human Knee
,”
J. Biomech.
,
43
(
8
), pp.
1623
1626
.10.1016/j.jbiomech.2010.01.036
17.
Ince
,
D. C.
,
Hatton
,
L.
, and
Graham-Cumming
,
J.
,
2012
, “
The Case for Open Computer Programs
,”
Nat.
,
482
(
7386
), pp.
485
488
.10.1038/nature10836
18.
Erdemir
,
A.
,
2015
, “
Open Knee: Open Source Modeling & Simulation to Enable Scientific Discovery and Clinical Care in Knee Biomechanics
,”
J. Knee Surg.
,
29
(
02
), pp.
107
116
.10.1055/s-0035-1564600
19.
Erdemir
,
A.
,
Hunter
,
P. J.
,
Holzapfel
,
G. A.
,
Loew
,
L. M.
,
Middleton
,
J.
,
Jacobs
,
C. R.
,
Nithiarasu
,
P.
,
Löhner
,
R.
,
Wei
,
G.
,
Winkelstein
,
B. A.
,
Barocas
,
V. H.
,
Guilak
,
F.
,
Ku
,
J. P.
,
Hicks
,
J. L.
,
Delp
,
S. L.
,
Sacks
,
M. S.
,
Weiss
,
J. A.
,
Ateshian
,
G. A.
,
Maas
,
S. A.
,
McCulloch
,
A. D.
, and
Peng
,
C. Y.
,
2018
, “
Perspectives on Sharing Models and Related Resources in Computational Biomechanics Research
,”
ASME J. Biomech. Eng.
,
140
(
2
), p.
024701
.10.1115/1.4038768
20.
Erdemir
,
A.
,
Guess
,
T. M.
,
Halloran
,
J. P.
,
Tadepalli
,
S. C.
, and
Morrison
,
T. M.
,
2012
, “
Considerations for Reporting Finite Element Analysis Studies in Biomechanics
,”
J. Biomech.
,
45
(
4
), pp.
625
633
.10.1016/j.jbiomech.2011.11.038
You do not currently have access to this content.