Abstract

Corneal laser surgery is a widely used method for the treatment of ocular myopia, hyperopia, and astigmatism. Although it is a well-established technique, the photothermal properties of the cornea are often overlooked, causing unexpected changes in temperature during laser irradiation. Therefore, there is a need for further investigation of the temperature response of the cornea under laser irradiation. In the present work, a photothermal corneal numerical model is presented, assuming the stratification of the cornea with laser ablation in an uncoagulated layer, a coagulated layer, a dehydrating layer, a dried layer, and a carbonized layer. The modified Pennes' bioheat transfer equation and Lambert-Beer's law are applied to simulate heat transfer in the corneal tissue during laser irradiation. And the corneal dynamic photothermal parameters are considered in the proposed model. The central surface temperature, the boundary and thickness of each layer, and the thermal damage during laser irradiation are investigated. From the model, it was found that in the steady-state process, the thickness of the coagulated layer was 2.6, 14.4, and 52.4 times larger than that of the dehydrating layer, the dried layer, and the carbonized layer, respectively. The thickness of the corneal thermal damage gradually increased, and reached a peak of 0.196mm at about 18.2 ms. Subsequently, it sharply decreased by 0.01 mm before stabilizing. On this basis, the influence of laser intensity is investigated. The parametric investigation and analysis presented provide a theoretical basis for corneal laser surgery, which can be used to improve our understanding of laser-tissue surgery.

References

1.
Munnerlyn
,
C. R.
,
Koons
,
S. J.
, and
Maeshall
,
J.
,
1988
, “
Photorefractive Keratectomy - a Technique for Laser Refractive Surgery
,”
J. Cataract Refr. Surg.
,
14
(
1
), pp.
46
52
.10.1016/S0886-3350(88)80063-4
2.
Seiler
,
T.
,
Kaemmerer
,
M.
,
Mierdel
,
P.
, and
Krinke
,
H. E.
,
2000
, “
Ocular Optical Aberrations After Photorefractive Keratectomy for Myopia and Myopic Astigmatism
,”
Arch. Ophthalmol.
,
118
(
1
), pp.
17
21
.10.1001/archopht.118.1.17
3.
Huang
,
T.
,
Bisarnsin
,
T.
,
Schachar
,
R. A.
, and
Black
,
T. D.
,
1988
, “
Corneal Curvature Change Due to Structural Alternation by Radial Keratotomy
,”
ASME J. Biomech. Eng.
,
110
(
3
), pp.
249
253
.10.1115/1.3108438
4.
Cherry
,
P. M. H.
, and
Britton
,
R.
,
1984
, “
Experimental Radial Keratectomy in Rabbits for the Correction of Aphakia
,”
Cornea
,
3
(
1
), pp.
61
64
.10.1097/00003226-198401000-00011
5.
Jain
,
S.
,
Hahn
,
T. W.
,
McCally
,
R. L.
, and
Azar
,
D. T.
,
1995
, “
Antioxidants Reduce Corneal Light Scattering After Excimer Keratectomy in Rabbits
,”
Laser. Surg. Med.
,
17
(
2
), pp.
160
165
.10.1002/lsm.1900170204
6.
Sousa
,
J. M.
,
Hirai
,
F. E.
, and
Sato
,
E. H.
,
2013
, “
Keratoconus and Corneal Stability After Radial Keratectomy in the Fellow Eye: Case Report
,”
Arq. Bras. Oftalmol.
,
76
(
3
), pp.
195
196
.10.1590/S0004-27492013000300014
7.
Seiler
,
T.
, and
Wollensak
,
J.
,
1991
, “
Myopic Photorefractive Keratectomy With the Excimer Laser: One-Year Follow-Up
,”
Ophthalmology
,
98
(
8
), pp.
1156
1163
.10.1016/S0161-6420(91)32157-2
8.
Peyman
,
G. A.
,
Badaro
,
R. M.
, and
Khoobehi
,
B.
,
1989
, “
Corneal Ablation in Rabbits Using an Infrared (2.9-μm) Erbium:YAG Laser
,”
Ophthalmology
,
96
(
8
), pp.
1160
1170
.10.1016/S0161-6420(89)32755-2
9.
Niemz
,
M. H.
,
2007
,
Laser-Tissue Interactions: Fundamentals and Applications
,
Springer
,
Berlin, Heidelberg
.
10.
Rahbar
,
S.
, and
Shokooh-Saremi
,
M.
,
2018
, “
Mathematical Modeling of Laser Linear Thermal Effects on the Anterior Layer of the Human Eye
,”
Opt. Laser Technol.
,
99
, pp.
72
80
.10.1016/j.optlastec.2017.09.033
11.
Venugopalan
,
V.
,
Nishioka
,
N. S.
, and
Mikic
,
B. B.
,
1994
, “
The Effect of Laser Parameters on the Zone of Thermal Injury Produced by Laser Ablation of Biological Tissue
,”
ASME J. Biomech. Eng.
,
116
(
1
), pp.
62
70
.10.1115/1.2895706
12.
Li
,
H. J.
,
Zhang
,
X. X.
, and
Yi
,
Y. F.
,
2002
, “
Measurement of Blood Perfusion Using the Temperature Response to Constant Surface Flux Heating
,”
Int. J. Thermophys.
,
23
(
6
), pp.
1631
1644
.10.1023/A:1020798119128
13.
Jacques
,
S. L.
,
1993
, “
Finite Difference Modeling of Laser Ablation of Tissue
,”
Proceedings of SPIE 1882, Laser-Tissue Interaction IV
,
Los Angeles, CA
, Jan. 18–20, pp.
422
431
.10.1117/12.147688
14.
Jacques
,
S. L.
,
1995
, “
Experiments and Modeling of the Dynamic Nature of Continuous Laser Ablation of Tissue
,”
Proceedings of SPIE 2323, Laser Interaction With Hard and Soft Tissue II
,
Lille, France
, Sept. 6–10, pp.
273
283
.10.1117/12.199206
15.
McKenzie
,
A. L.
,
1986
, “
A Three-Zone Model of Soft-Tissue Damage by a CO2 Laser
,”
Phys. Med. Biol.
,
31
(
9
), pp.
967
83
.10.1088/0031-9155/31/9/003
16.
McKenzie
,
A. L.
,
1990
, “
Physics of Thermal Processes in Laser-Tissue Interaction
,”
Phys. Med. Biol.
,
35
(
9
), pp.
1175
1209
.10.1088/0031-9155/35/9/001
17.
Zhang
,
J. Z.
,
Shen
,
Y. G.
, and
Zhang
,
X. X.
,
2009
, “
A Dynamic Photo-Thermal Model of Carbon Dioxide Laser Tissue Ablation
,”
Laser. Med. Sci.
,
24
(
3
), pp.
329
338
.10.1007/s10103-008-0566-y
18.
Gijsbers
,
G. H.
,
Selten
,
F. M.
, and
Gemert
,
M. J. V.
,
1991
, “
CW Laser Ablation Velocities as a Function of Absorption in an Experimental One-Dimensional Tissue Model
,”
Laser. Surg. Med.
,
11
(
3
), pp.
287
296
.10.1002/lsm.1900110313
19.
Pennes
,
H. H.
,
1998
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
85
(
1
), pp.
5
34
.10.1152/jappl.1998.85.1.5
20.
Heussner
,
N.
,
Holl
,
L.
,
Nowak
,
T.
,
Beuth
,
T.
,
Spitzer
,
M. S.
, and
Stork
,
W.
,
2014
, “
Prediction of Temperature and Damage in an Irradiated Human Eye—Utilization of a Detailed Computer Model Which Includes a Vectorial Blood Stream in the Choroid
,”
Comput. Biol. Med.
,
51
, pp.
35
43
.10.1016/j.compbiomed.2014.04.021
21.
London
,
R. A.
,
Glinsky
,
M. E.
,
Zimmerman
,
G. B.
,
Bailey
,
D. S.
,
Eder
,
D. C.
, and
Jacques
,
S. L.
,
1997
, “
Laser-Tissue Interaction Modeling With LATIS
,”
Appl. Opt.
,
36
(
34
), pp.
9068
9074
.10.1364/AO.36.009068
22.
Zheng
,
H. F.
,
2017
, “
Appendix
,”
Solar Energy Desalination Technology
,
H. F.
Zheng
, ed.,
Elsevier
,
Amsterdam
, pp.
737
754
.
23.
Maurice
,
D. M.
,
1957
, “
The Structure and Transparency of the Cornea
,”
J. Physiol.
,
136
(
2
), pp.
263
286
.10.1113/jphysiol.1957.sp005758
24.
Shanyfelt
,
L. M.
,
2008
, “
ArF Excimer Laser Corneal Ablation: Effects of Laser Repetition Rate and Fundamental Laser-Tissue Coupling
,”
Ph.D. thesis
,
University of Florida
,
Gainesville, FL
.https://www.semanticscholar.org/paper/ArF-excimer-laser-corneal-ablation%3A-Effects-of-rate-Shanyfelt/22f13569de28c15a8e2025b552dffca8396ac193
25.
Duck
,
F. A.
,
1990
, “
Chapter 3 - Optical Properties of Tissue Including Ultraviolet and Infrared Radiation
,”
Physical Properties of Tissues
,
F. A.
Duck
, ed.,
Academic Press
,
London
, UK, pp.
43
71
.
26.
Manns
,
F.
,
Borja
,
D.
,
Parel
,
J. M.
,
Smiddy
,
W.
, and
Culbertson
,
W.
,
2003
, “
Semianalytical Thermal Model for Subablative Laser Heating of Homogeneous Nonperfused Biological Tissue: Application to Laser Thermokeratoplasty
,”
J. Biomed. Opt.
,
8
(
2
), pp.
288
297
.10.1117/1.1560644
27.
Choi
,
B.
,
2001
, “
Thermal Interactions of Pulsed Laser Radiation and Cryogen Spray Cooling With Skin
,”
Ph.D. thesis
,
The University of Texas at Austin, Austin, TX
.http://hdl.handle.net/2152/10288
28.
Cvetkovic
,
M.
,
Poljak
,
D.
, and
Peratta
,
A.
,
2008
, “
Thermal Modelling of the Human Eye Exposed to Laser Radiation
,”
2008 16th International Conference on Software, Telecommunications and Computer Networks
,
Split, Croatia
, Sept. 25–27, pp.
16
20
.10.1109/SOFTCOM.2008.4669444
29.
Vito
,
R. P.
,
Shin
,
T. J.
, and
Mccarey
,
B. E.
,
1989
, “
A Mechanical Model of the Cornea: The Effects of Physiological and Surgical Factors on Radial Keratotomy Surgery
,”
J. Refract. Surg.
,
5
(
2
), pp.
82
88
.10.3928/1081-597X-19890301-05
30.
Alastrué
,
V.
,
Calvo
,
B.
,
Pe
,
A. E.
, and
Doblaré
,
M.
,
2006
, “
Biomechanical Modeling of Refractive Corneal Surgery
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
150
160
.10.1115/1.2132368
31.
Anderson
,
T.
,
Cheng
,
P. L.
,
Gautier
,
T.
, and
Li
,
R.
,
2016
, “
Modeling the Cornea During Laser Ablation Procedures
,”
Cornell University
,
Ithaca, NY
, accessed Nov. 24, 2020, https://ecommons.cornell.edu/handle/1813/43902
32.
Mapstone
,
R.
,
1968
, “
Measurement of Corneal Temperature
,”
Exp. Eye Res.
,
7
(
2
), pp.
237
242
.10.1016/S0014-4835(68)80073-9
33.
Henriques
,
F. C.
, and
Moritz
,
A. R.
,
1947
, “
Studies of Thermal Injury: I. The Conduction of Heat to and Through Skin and the Temperatures Attained Therein. A Theoretical and an Experimental Investigation
,”
Am. J. Pathol.
,
23
(
4
), pp.
530
549
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1934298/
34.
Patel
,
N. V.
,
Jethwa
,
P. R.
,
Shetty
,
A.
, and
Danish
,
S. F.
,
2015
, “
Does the Real-Time Thermal Damage Estimate Allow for Estimation of Tumor Control After MRI-Guided Laser-Induced Thermal Therapy? Initial Experience With Recurrent Intracranial Ependymomas
,”
J. Neurosurg. Pediatr.
,
15
(
4
), pp.
363
371
.10.3171/2014.10.PEDS13698
35.
Ren
,
Y. T.
,
Qi
,
H.
,
Chen
,
Q.
, and
Ruan
,
L. M.
,
2017
, “
Thermal Dosage Investigation for Optimal Temperature Distribution in Gold Nanoparticle Enhanced Photothermal Therapy
,”
Int. J. Heat Mass Transfer
,
106
, pp.
212
221
.10.1016/j.ijheatmasstransfer.2016.10.067
36.
Henriques
,
F. C.
,
1947
, “
Studies of Thermal Injuries V. The Predictability and the Significance of Thermally Induced Rate Processes Leading to Irreversible Epidermal Injury
,”
Arch. Pathol.
,
43
(
5
), pp.
489
502
.https://pubmed.ncbi.nlm.nih.gov/20243514/
37.
Rafiq
,
A.
, and
Khanday
,
M. A.
,
2016
, “
Thermal Behavior of Human Eye in Relation With Change in Blood Perfusion, Porosity, Evaporation and Ambient Temperature
,”
J. Therm. Biol.
,
62
, pp.
138
142
.10.1016/j.jtherbio.2016.06.024
38.
Zhang
,
J. Z.
,
2009
, “
Photo-Thermal Interactions of Laser Ablation and Selective Photothermolysis During Laser Treatments of Skin Diseases
,” Ph.D. thesis,
Tsinghua University
,
Beijing, China
.
39.
Rastegar
,
S.
,
Motamedi
,
M.
,
Welch
,
A. J.
, and
Hayes
,
L. J.
,
1989
, “
A Theoretical Study of the Effect of Optical Properties in Laser Ablation of Tissue
,”
IEEE Trans Biomed Eng
,
36
(
12
), pp.
1180
1187
.10.1109/10.42112
40.
Vogel
,
A.
, and
Venugopalan
,
V.
,
2003
, “
Mechanisms of Pulsed Laser Ablation of Biological Tissues
,”
Chem. Rev.
,
103
(
2
), pp.
577
644
.10.1021/cr010379n
You do not currently have access to this content.