Abstract

Determination of optimal hemodynamic and pressure–volume loading conditions for patients undergoing veno-arterial extracorporeal membrane oxygenation (VA-ECMO) would benefit from understanding the impact of ECMO flow rates (QE) on the native cardiac output in the admixing zone, i.e., aortic root. This study characterizes the flow in the aortic root of a pig with severe myocardial ischemia using contrast-enhanced ultrasound particle image/tracking velocimetry (echo-PIV/PTV). New methods for data preprocessing are introduced, including autocontouring to remove surrounding tissues, followed by blind deconvolution to identify the centers of elongated bubble traces in images with low signal to noise ratio. Calibrations based on synthetic images show that this procedure increases the number of detected bubbles and reduces the error in their locations by 50%. Then, an optimized echo-PIV/PTV procedure, which integrates image enhancement with velocity measurements, is used for characterizing the time-resolved two-dimensional (2D) velocity distributions. Phase-averaged and instantaneous flow fields show that the ECMO flow rate influences the velocity and acceleration of the cardiac output during systole, and secondary flows during diastole. When QE is 3.0 L/min or higher, the cardiac ejection velocity, phase interval with open aortic valve, velocity-time integral (VTI), and mean arterial pressure (MAP) increase with decreasing QE, all indicating sufficient support. For lower QE, the MAP and VTI decrease as QE is reduced, and the deceleration during transition to diastole becomes milder. Hence, for this specific case, the optimal ECMO flow rate is 3.0 L/min.

References

1.
Pavlushkov
,
E.
,
Berman
,
M.
, and
Valchanov
,
K.
,
2017
, “
Cannulation Techniques for Extracorporeal Life Support
,”
Ann. Transl. Med.
,
5
(
4
), pp.
70
70
.10.21037/atm.2016.11.47
2.
Makdisi
,
G.
, and
Wang
,
I.
,
2015
, “
Extra Corporeal Membrane Oxygenation (ECMO) Review of a Lifesaving Technology
,”
J. Thorac. Dis.
,
7
(
7
), p.
E166
.10.3978/j.issn.2072-1439.2015.07.17
3.
Becker
,
J. A.
,
Short
,
B. L.
, and
Martin
,
G. R.
,
1998
, “
Cardiovascular Complications Adversely Affect Survival During Extracorporeal Membrane Oxygenation
,”
Crit. Care Med.
,
26
(
9
), pp.
1582
1586
.10.1097/00003246-199809000-00030
4.
Martin
,
G. R.
,
Short
,
B. L.
,
Abbott
,
C.
, and
O'brien
,
A. M.
,
1991
, “
Cardiac Stun in Infants Undergoing Extracorporeal Membrane Oxygenation
,”
J. Thorac. Cardiovasc. Surg.
,
101
(
4
), pp.
607
611
.10.1016/S0022-5223(19)36689-9
5.
Burkhoff
,
D.
,
Sayer
,
G.
,
Doshi
,
D.
, and
Uriel
,
N.
,
2015
, “
Hemodynamics of Mechanical Circulatory Support
,”
J. Am. Coll. Cardiol.
,
66
(
23
), pp.
2663
2674
.10.1016/j.jacc.2015.10.017
6.
Rao
,
P.
,
Khalpey
,
Z.
,
Smith
,
R.
,
Burkhoff
,
D.
, and
Kociol
,
R. D.
,
2018
, “
Venoarterial Extracorporeal Membrane Oxygenation for Cardiogenic Shock and Cardiac Arrest: Cardinal Considerations for Initiation and Management
,”
Circ. Hear. Fail.
,
11
(
9
), p.
e004905
.10.1161/CIRCHEARTFAILURE.118.004905
7.
Ostadal
,
P.
,
Mlcek
,
M.
,
Kruger
,
A.
,
Hala
,
P.
,
Lacko
,
S.
,
Mates
,
M.
,
Vondrakova
,
D.
,
Svoboda
,
T.
,
Hrachovina
,
M.
, and
Janotka
,
M.
,
2015
, “
Increasing Venoarterial Extracorporeal Membrane Oxygenation Flow Negatively Affects Left Ventricular Performance in a Porcine Model of Cardiogenic Shock
,”
J. Transl. Med.
,
13
(
1
), p.
266
.10.1186/s12967-015-0634-6
8.
Chung
,
M.
,
Shiloh
,
A. L.
, and
Carlese
,
A.
,
2014
, “
Monitoring of the Adult Patient on Venoarterial Extracorporeal Membrane Oxygenation
,”
Sci. World J.
,
2014
, pp.
1
10
.10.1155/2014/393258
9.
Schmidt
,
M.
,
Burrell
,
A.
,
Roberts
,
L.
,
Bailey
,
M.
,
Sheldrake
,
J.
,
Rycus
,
P. T.
,
Hodgson
,
C.
,
Scheinkestel
,
C.
,
Cooper
,
D. J.
,
Thiagarajan
,
R. R.
,
Brodie
,
D.
,
Pellegrino
,
V.
, and
Pilcher
,
D.
,
2015
, “
Predicting Survival After ECMO for Refractory Cardiogenic Shock: The Survival After Veno-Arterial-ECMO (Save)-Score
,”
Eur. Heart J.
,
36
(
33
), pp.
2246
2256
.10.1093/eurheartj/ehv194
10.
Donker
,
D. W.
,
Brodie
,
D.
,
Henriques
,
J. P. S.
, and
Broomé
,
M.
,
2019
, “
Left Ventricular Unloading During Veno-Arterial ECMO: A Simulation Study
,”
Asaio J.
,
65
(
1
), pp.
11
20
.10.1097/MAT.0000000000000755
11.
Lim
,
H. S.
,
Howell
,
N.
, and
Ranasinghe
,
A.
,
2017
, “
Extracorporeal Life Support: Physiological Concepts and Clinical Outcomes
,”
J. Card. Fail.
,
23
(
2
), pp.
181
196
.10.1016/j.cardfail.2016.10.012
12.
Gu
,
K.
,
Guan
,
Z.
,
Lin
,
X.
,
Feng
,
Y.
,
Feng
,
J.
,
Yang
,
Y.
,
Zhang
,
Z.
,
Chang
,
Y.
,
Ling
,
Y.
, and
Wan
,
F.
,
2019
, “
Numerical Analysis of Aortic Hemodynamics Under the Support of Venoarterial Extracorporeal Membrane Oxygenation and Intra-Aortic Balloon Pump
,”
Comput. Methods Programs Biomed.
,
182
, p.
105041
.10.1016/j.cmpb.2019.105041
13.
Zhang
,
Q.
,
Gao
,
B.
, and
Chang
,
Y.
,
2018
, “
The Numerical Study on the Effects of Cardiac Function on the Aortic Oxygen Distribution
,”
Med. Biol. Eng. Comput
,.,
56
(
7
), pp.
1305
1313
.10.1007/s11517-017-1777-9
14.
Stevens
,
M. C.
,
Callaghan
,
F. M.
,
Forrest
,
P.
,
Bannon
,
P. G.
, and
Grieve
,
S. M.
,
2017
, “
Flow Mixing During Peripheral Veno-Arterial Extra Corporeal Membrane Oxygenation–a Simulation Study
,”
J. Biomech.
,
55
, pp.
64
70
.10.1016/j.jbiomech.2017.02.009
15.
Stevens
,
M. C.
,
Callaghan
,
F. M.
,
Forrest
,
P.
,
Bannon
,
P. G.
, and
Grieve
,
S. M.
,
2018
, “
A Computational Framework for Adjusting Flow During Peripheral Extracorporeal Membrane Oxygenation to Reduce Differential Hypoxia
,”
J. Biomech.
,
79
, pp.
39
44
.10.1016/j.jbiomech.2018.07.037
16.
Assmann
,
A.
,
Benim
,
A. C.
,
Gül
,
F.
,
Lux
,
P.
,
Akhyari
,
P.
,
Boeken
,
U.
,
Joos
,
F.
,
Feindt
,
P.
, and
Lichtenberg
,
A.
,
2012
, “
Pulsatile Extracorporeal Circulation During on-Pump Cardiac Surgery Enhances Aortic Wall Shear Stress
,”
J. Biomech.
,
45
(
1
), pp.
156
163
.10.1016/j.jbiomech.2011.09.021
17.
Gu
,
K.
,
Zhang
,
Z.
,
Gao
,
B.
,
Chang
,
Y.
, and
Wan
,
F.
,
2018
, “
Hemodynamic Effects of Perfusion Level of Peripheral ECMO on Cardiovascular System
,”
Biomed. Eng. Online
,
17
(
1
), pp.
1
14
.10.1186/s12938-018-0493-5
18.
Markl
,
M.
,
Draney
,
M. T.
,
Hope
,
M. D.
,
Levin
,
J. M.
,
Chan
,
F. P.
,
Alley
,
M. T.
,
Pelc
,
N. J.
, and
Herfkens
,
R. J.
,
2004
, “
Time-Resolved 3-Dimensional Velocity Mapping in the Thoracic Aorta: Visualization of 3-Directional Blood Flow Patterns in Healthy Volunteers and Patients
,”
J. Comput. Assist. Tomogr.
,
28
(
4
), pp.
459
468
.10.1097/00004728-200407000-00005
19.
Kvitting
,
J.-P. E.
,
Ebbers
,
T.
,
Wigström
,
L.
,
Engvall
,
J.
,
Olin
,
C. L.
, and
Bolger
,
A. F.
,
2004
, “
Flow Patterns in the Aortic Root and the Aorta Studied With Time-Resolved, 3-Dimensional, Phase-Contrast Magnetic Resonance Imaging: Implications for Aortic Valve–Sparing Surgery
,”
J. Thorac. Cardiovasc. Surg.
,
127
(
6
), pp.
1602
1607
.10.1016/j.jtcvs.2003.10.042
20.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Rizzo
,
G.
,
Cadioli
,
M.
,
Esposito
,
A.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
,
2011
, “
Mechanistic Insight Into the Physiological Relevance of Helical Blood Flow in the Human Aorta: An In Vivo Study
,”
Biomech. Model. Mechanobiol.
,
10
(
3
), pp.
339
355
.10.1007/s10237-010-0238-2
21.
Hope
,
T. A.
,
Markl
,
M.
,
Wigström
,
L.
,
Alley
,
M. T.
,
Miller
,
D. C.
, and
Herfkens
,
R. J.
,
2007
, “
Comparison of Flow Patterns in Ascending Aortic Aneurysms and Volunteers Using Four‐Dimensional Magnetic Resonance Velocity Mapping
,”
J. Magn. Reson. Imag.
,
26
(
6
), pp.
1471
1479
.10.1002/jmri.21082
22.
Hope
,
M. D.
,
Hope
,
T. A.
,
Meadows
,
A. K.
,
Ordovas
,
K. G.
,
Urbania
,
T. H.
,
Alley
,
M. T.
, and
Higgins
,
C. B.
,
2010
, “
Bicuspid Aortic Valve: Four-Dimensional MR Evaluation of Ascending Aortic Systolic Flow Patterns
,”
Radiology
,
255
(
1
), pp.
53
61
.10.1148/radiol.09091437
23.
Kilner
,
P. J.
,
Yang
,
G. Z.
,
Mohiaddin
,
R. H.
,
Firmin
,
D. N.
, and
Longmore
,
D. B.
,
1993
, “
Helical and Retrograde Secondary Flow Patterns in the Aortic Arch Studied by Three-Directional Magnetic Resonance Velocity Mapping
,”
Circulation
,
88
(
5
), pp.
2235
2247
.10.1161/01.CIR.88.5.2235
24.
Hansen
,
K. L.
,
Møller-Sørensen
,
H.
,
Pedersen
,
M. M.
,
Hansen
,
P. M.
,
Kjaergaard
,
J.
,
Lund
,
J. T.
,
Nilsson
,
J. C.
,
Jensen
,
J. A.
, and
Nielsen
,
M. B.
,
2015
, “
First Report on Intraoperative Vector Flow Imaging of the Heart Among Patients With Healthy and Diseased Aortic Valves
,”
Ultrasonics
,
56
, pp.
243
250
.10.1016/j.ultras.2014.07.015
25.
Hansen
,
K. L.
,
Møller-Sørensen
,
H.
,
Kjaergaard
,
J.
,
Jensen
,
M. B.
,
Lund
,
J. T.
,
Pedersen
,
M. M.
,
Lange
,
T.
,
Jensen
,
J. A.
, and
Nielsen
,
M. B.
,
2016
, “
Intra-Operative Vector Flow Imaging Using Ultrasound of the Ascending Aorta Among 40 Patients With Normal, Stenotic and Replaced Aortic Valves
,”
Ultrasound Med. Biol.
,
42
(
10
), pp.
2414
2422
.10.1016/j.ultrasmedbio.2016.06.009
26.
Hansen
,
K. L.
,
Møller-Sørensen
,
H.
,
Kjaergaard
,
J.
,
Jensen
,
M. B.
,
Lund
,
J. T.
,
Pedersen
,
M. M.
,
Olesen
,
J. B.
,
Jensen
,
J. A.
, and
Nielsen
,
M. B.
,
2017
, “
Vector Flow Imaging Compared With Conventional Doppler Ultrasound and Thermodilutiou7n for Estimation of Blood Flow in the Ascending Aorta
,”
Ultrason. Imaging
,
39
(
1
), pp.
3
18
.10.1177/0161734615620137
27.
Adrian
,
L.
,
Adrian
,
R. J.
, and
Westerweel
,
J.
,
2011
,
Particle Image Velocimetry
,
Cambridge University Press
,
New York
.
28.
Abe
,
H.
,
Caracciolo
,
G.
,
Kheradvar
,
A.
,
Pedrizzetti
,
G.
,
Khandheria
,
B. K.
,
Narula
,
J.
, and
Sengupta
,
P. P.
,
2013
, “
Contrast Echocardiography for Assessing Left Ventricular Vortex Strength in Heart Failure: A Prospective Cohort Study
,”
Eur. Hear. J. Cardiovasc. Imaging
,
14
(
11
), pp.
1049
1060
.10.1093/ehjci/jet049
29.
Agati
,
L.
,
Cimino
,
S.
,
Tonti
,
G.
,
Cicogna
,
F.
,
Petronilli
,
V.
,
De Luca
,
L.
,
Iacoboni
,
C.
, and
Pedrizzetti
,
G.
,
2014
, “
Quantitative Analysis of Intraventricular Blood Flow Dynamics by Echocardiographic Particle Image Velocimetry in Patients With Acute Myocardial Infarction at Different Stages of Left Ventricular Dysfunction
,”
Eur. Hear. J.–Cardiovasc. Imaging
,
15
(
11
), pp.
1203
1212
.10.1093/ehjci/jeu106
30.
Mangual
,
J. O.
,
Kraigher-Krainer
,
E.
,
De Luca
,
A.
,
Toncelli
,
L.
,
Shah
,
A.
,
Solomon
,
S.
,
Galanti
,
G.
,
Domenichini
,
F.
, and
Pedrizzetti
,
G.
,
2013
, “
Comparative Numerical Study on Left Ventricular Fluid Dynamics After Dilated Cardiomyopathy
,”
J. Biomech.
,
46
(
10
), pp.
1611
1617
.10.1016/j.jbiomech.2013.04.012
31.
Martínez-Legazpi
,
P.
,
Bermejo
,
J.
,
Benito
,
Y.
,
Yotti
,
R.
,
Pérez del Villar
,
C.
,
González-Mansilla
,
A.
,
Barrio
,
A.
,
Villacorta
,
E.
,
Sánchez
,
P. L.
,
Fernández-Avilés
,
F.
, and
del Álamo
,
J. C.
,
2014
, “
Contribution of the Diastolic Vortex Ring to Left Ventricular Filling
,”
J. Am. Coll. Cardiol.
,
64
(
16
), pp.
1711
1721
.10.1016/j.jacc.2014.06.1205
32.
Keane
,
R. D.
,
Adrian
,
R.
, and
Zhang
,
Y.
,
1995
, “
Super-Resolution Particle Imaging Velocimetry
,”
Meas. Sci. Technol.
,
6
(
6
), pp.
754
768
.10.1088/0957-0233/6/6/013
33.
Sampath
,
K.
,
Harfi
,
T. T.
,
George
,
R. T.
, and
Katz
,
J.
,
2018
, “
Optimized Time-Resolved Echo Particle Image Velocimetry–Particle Tracking Velocimetry Measurements Elucidate Blood Flow in Patients With Left Ventricular Thrombus
,”
ASME J. Biomech. Eng.
,
140
(
4
), p.
41010
.10.1115/1.4038886
34.
Pan
,
J.
,
Hu
,
Z.
,
Su
,
Z.
, and
Yang
,
M.-H.
,
2014
, “
Deblurring Text Images Via L0-Regularized Intensity and Gradient Prior
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, Columbus, OH, June 23–28, pp.
2901
2908
.10.1109/CVPR.2014.371
35.
Chan
,
T. F.
, and
Vese
,
L. A.
,
2001
, “
Active Contours Without Edges
,”
IEEE Trans. image Process.
,
10
(
2
), pp.
266
277
.10.1109/83.902291
36.
Gonzales
,
R. C.
, and
Woods
,
R. E.
,
2002
,
Digital Image Processing
,
Prentice Hall
,
Upper Saddle River, NJ
.
37.
Sun
,
Y.
,
Kruse
,
D. E.
,
Dayton
,
P. A.
, and
Ferrara
,
K. W.
,
2005
, “
High-Frequency Dynamics of Ultrasound Contrast Agents
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
52
(
11
), pp.
1981
1991
.10.1109/TUFFC.2005.1561667
38.
Goertz
,
D. E.
,
de Jong
,
N.
, and
van der Steen
,
A. F. W.
,
2007
, “
Attenuation and Size Distribution Measurements of DefinityTM and Manipulated DefinityTM Populations
,”
Ultrasound Med. Biol.
,
33
(
9
), pp.
1376
1388
.10.1016/j.ultrasmedbio.2007.03.009
39.
Whyte
,
O.
,
Sivic
,
J.
, and
Zisserman
,
A.
,
2014
, “
Deblurring Shaken and Partially Saturated Images
,”
Int. J. Comput. Vis.
,
110
(
2
), pp.
185
201
.10.1007/s11263-014-0727-3
40.
Sheng
,
J.
,
Malkiel
,
E.
, and
Katz
,
J.
,
2008
, “
Using Digital Holographic Microscopy for Simultaneous Measurements of 3D Near Wall Velocity and Wall Shear Stress in a Turbulent Boundary Layer
,”
Exp. Fluids
,
45
(
6
), pp.
1023
1035
.10.1007/s00348-008-0524-2
41.
Roth
,
G. I.
, and
Katz
,
J.
,
2001
, “
Five Techniques for Increasing the Speed and Accuracy of PIV Interrogation
,”
Meas. Sci. Technol.
,
12
(
3
), pp.
238
245
.10.1088/0957-0233/12/3/302
42.
Lucy
,
L. B.
,
1992
, “
Resolution Limits for Deconvolved Images
,”
Astron. J.
,
104
, pp.
1260
1265
.10.1086/116315
You do not currently have access to this content.