Abstract

Cells within the lung micro-environment are continuously subjected to dynamic mechanical stimuli which are converted into biochemical signaling events in a process known as mechanotransduction. In pulmonary diseases, the abrogated mechanical conditions modify the homeostatic signaling which influences cellular phenotype and disease progression. The use of in vitro models has significantly expanded our understanding of lung mechanotransduction mechanisms. However, our ability to match complex facets of the lung including three-dimensionality, multicellular interactions, and multiple simultaneous forces is limited and it has proven difficult to replicate and control these factors in vitro. The goal of this review is to (a) outline the anatomy of the pulmonary system and the mechanical stimuli that reside therein, (b) describe how disease impacts the mechanical micro-environment of the lung, and (c) summarize how existing in vitro models have contributed to our current understanding of pulmonary mechanotransduction. We also highlight critical needs in the pulmonary mechanotransduction field with an emphasis on next-generation devices that can simulate the complex mechanical and cellular environment of the lung. This review provides a comprehensive basis for understanding the current state of knowledge in pulmonary mechanotransduction and identifying the areas for future research.

References

1.
Divertie
,
M. B.
,
Cassan
,
S. M.
, and
Brown
,
A. L.
,
1976
, “
Ultrastructural Morphometry of the Blood-Air Barrier in Pulmonary Sarcoidosis
,”
Chest
,
69
(
2
), pp.
154
157
.10.1378/chest.69.2.154
2.
Bai
,
A.
,
Eidelman
,
D. H.
,
Hogg
,
J. C.
,
James
,
A. L.
,
Lambert
,
R. K.
,
Ludwig
,
M. S.
,
Martin
,
J.
,
McDonald
,
D. M.
,
Mitzner
,
W. A.
,
Okazawa
,
M.
, and
Et
,
A.
,
1994
, “
Proposed Nomenclature for Quantifying Subdivisions of the Bronchial Wall
,”
J. Appl. Physiol.
,
77
(
2
), pp.
1011
1014
.10.1152/jappl.1994.77.2.1011
3.
Eskandari
,
M.
,
Nordgren
,
T. M.
, and
O'Connell
,
G. D.
,
2019
, “
Mechanics of Pulmonary Airways: Linking Structure to Function Through Constitutive Modeling, Biochemistry, and Histology
,”
Acta Biomater.
,
97
, pp.
513
523
.10.1016/j.actbio.2019.07.020
4.
Gunst
,
S. J.
,
2012
,
Chapter 104 - Airway Smooth Muscle and Asthma
,
J. A.
Hill
and
E. N.
Olson
, eds.,
Academic Press
,
Boston/Waltham, MA
, pp.
1359
1369
.
5.
Alper
,
S.
, and
Janssen
,
W. J.
, eds.,
2018
,
Lung Innate Immunity and Inflammation: Methods and Protocols
,
Springer
,
New York
.
6.
Rogers
,
D. F.
,
2003
, “
The Airway Goblet Cell
,”
Int. J. Biochem. Cell Biol.
,
35
(
1
), pp.
1
6
.10.1016/S1357-2725(02)00083-3
7.
Whitsett
,
J. A.
,
2018
, “
Airway Epithelial Differentiation and Mucociliary Clearance
,”
Ann. Am. Thorac. Soc.
,
15
(
Suppl_3
), pp.
S143
S148
.10.1513/AnnalsATS.201802-128AW
8.
Zuo
,
W.-L.
,
Shenoy
,
S. A.
,
Li
,
S.
,
O'Beirne
,
S. L.
,
Strulovici-Barel
,
Y.
,
Leopold
,
P. L.
,
Wang
,
G.
,
Staudt
,
M. R.
,
Walters
,
M. S.
,
Mason
,
C.
,
Kaner
,
R. J.
,
Mezey
,
J. G.
, and
Crystal
,
R. G.
,
2018
, “
Ontogeny and Biology of Human Small Airway Epithelial Club Cells
,”
Am. J. Respir. Crit. Care Med.
,
198
(
11
), pp.
1375
1388
.10.1164/rccm.201710-2107OC
9.
Rokicki
,
W.
,
Rokicki
,
M.
,
Wojtacha
,
J.
, and
Dżeljijli
,
A.
,
2016
, “
The Role and Importance of Club Cells (Clara Cells) in the Pathogenesis of Some Respiratory Diseases
,”
Kardiochirurgia Torakochirurgia Pol. Pol. J. Cardio-Thorac. Surg.
,
1
(
1
), pp.
26
30
.10.5114/kitp.2016.58961
10.
Plopper
,
C. G.
, and
Hyde
,
D. M.
,
2015
, “
Chapter 7—Epithelial Cells of the Bronchiole
,”
Comparative Biology of the Normal Lung
,
R. A.
Parent
, ed., 2nd ed.,
Academic Press
,
San Diego
, CA, pp.
83
92
.
11.
Juarez
,
E.
,
Nuñez
,
C.
,
Sada
,
E.
,
Ellner
,
J. J.
,
Schwander
,
S. K.
, and
Torres
,
M.
,
2010
, “
Differential Expression of Toll-Like Receptors on Human Alveolar Macrophages and Autologous Peripheral Monocytes
,”
Respir. Res.
,
11
(
1
), p.
2
.10.1186/1465-9921-11-2
12.
Wissel
,
H.
,
Schulz
,
C.
,
Koehne
,
P.
,
Richter
,
E.
,
Maass
,
M.
, and
Rüdiger
,
M.
,
2005
, “
Chlamydophila Pneumoniae Induces Expression of Toll-Like Receptor 4 and Release of TNF-α and MIP-2 Via an NF-ΚB Pathway in Rat Type II Pneumocytes
,”
Respir. Res.
,
6
(
1
), p.
51
.10.1186/1465-9921-6-51
13.
Barman
,
S.
,
Davidson
,
M. L.
,
Walker
,
L. M.
,
Anna
,
S. L.
, and
Zasadzinski
,
J. A.
,
2020
, “
Inflammation Product Effects on Dilatational Mechanics Can Trigger the Laplace Instability and Acute Respiratory Distress Syndrome
,”
Soft Matter
,
16
(
29
), pp.
6890
6901
.10.1039/D0SM00415D
14.
Autilio
,
C.
, and
Pérez-Gil
,
J.
,
2019
, “
Understanding the Principle Biophysics Concepts of Pulmonary Surfactant in Health and Disease
,”
Arch. Dis. Child. Fetal Neonatal Ed.
,
104
(
4
), pp.
F443
F451
.10.1136/archdischild-2018-315413
15.
Markart
,
P.
,
Ruppert
,
C.
,
Wygrecka
,
M.
,
Colaris
,
T.
,
Dahal
,
B.
,
Walmrath
,
D.
,
Harbach
,
H.
,
Wilhelm
,
J.
,
Seeger
,
W.
,
Schmidt
,
R.
, and
Guenther
,
A.
,
2007
, “
Patients With ARDS Show Improvement But Not Normalisation of Alveolar Surface Activity With Surfactant Treatment: Putative Role of Neutral Lipids
,”
Thorax
,
62
(
7
), pp.
588
594
.10.1136/thx.2006.062398
16.
Parra
,
E.
, and
Pérez-Gil
,
J.
,
2015
, “
Composition, Structure and Mechanical Properties Define Performance of Pulmonary Surfactant Membranes and Films
,”
Chem. Phys. Lipids
,
185
, pp.
153
175
.10.1016/j.chemphyslip.2014.09.002
17.
Bienenstock
,
J.
,
1984
, “
The Lung as an Immunologic Organ
,”
Annu. Rev. Med.
,
35
(
1
), pp.
49
62
.10.1146/annurev.me.35.020184.000405
18.
Liegeois
,
M.
,
Legrand
,
C.
,
Desmet
,
C. J.
,
Marichal
,
T.
, and
Bureau
,
F.
,
2018
, “
The Interstitial Macrophage: A Long-Neglected Piece in the Puzzle of Lung Immunity
,”
Cell. Immunol.
,
330
, pp.
91
96
.10.1016/j.cellimm.2018.02.001
19.
Suki
,
B.
,
Stamenović
,
D.
, and
Hubmayr
,
R.
,
2011
, “
Lung Parenchymal Mechanics
,” Comprehensive Physiology,
American Cancer Society
, Boston, MA, pp.
1317
1351
.10.1002/cphy.c100033
20.
White
,
E. S.
,
2015
, “
Lung Extracellular Matrix and Fibroblast Function
,”
Ann. Am. Thorac. Soc.
,
12
(
Suppl. 1
), pp.
S30
S33
.10.1513/AnnalsATS.201406-240MG
21.
Sevin
,
C. M.
, and
Light
,
R. W.
,
2011
, “
Microscopic Anatomy of the Pleura
,”
Thorac. Surg. Clin.
,
21
(
2
), pp.
173
175
.10.1016/j.thorsurg.2010.12.003
22.
El-Hashash
,
A.
,
2018
, “
Brief Overview of the Human Respiratory System Structure and Development
,”
Lung Stem Cell Behavior
,
A.
El-Hashash
, ed.,
Springer International Publishing
,
Cham, Switzerland
, pp.
1
3
.
23.
Novak
,
C. M.
,
Horst
,
E. N.
,
Taylor
,
C. C.
,
Liu
,
C. Z.
, and
Mehta
,
G.
, “Fluid Shear Stress Stimulates Breast Cancer Cells to Display Invasive and Chemoresistant Phenotypes While Upregulating PLAU in a 3D Bioreactor,”
Biotechnol. Bioeng.
, 116(11), pp.
3084
3097
.10.1002/bit.27119
24.
Novak
,
C. M.
,
Horst
,
E. N.
,
Lin
,
E.
, and
Mehta
,
G.
,
2020
, “
Compressive Stimulation Enhances Ovarian Cancer Proliferation, Invasion, Chemoresistance, and Mechanotransduction Via CDC42 in a 3D Bioreactor
,”
Cancers
,
12
(
6
), p.
1521
.10.3390/cancers12061521
25.
Novak
,
C.
,
Horst
,
E.
, and
Mehta
,
G.
,
2018
, “
Mechanotransduction in Ovarian Cancer: Shearing Into the Unknown
,”
APL Bioeng.
,
2
(
3
), p.
031701
.10.1063/1.5024386
26.
Liu
,
F.
,
Mih
,
J. D.
,
Shea
,
B. S.
,
Kho
,
A. T.
,
Sharif
,
A. S.
,
Tager
,
A. M.
, and
Tschumperlin
,
D. J.
,
2010
, “
Feedback Amplification of Fibrosis Through Matrix Stiffening and COX-2 Suppression
,”
J. Cell Biol.
,
190
(
4
), pp.
693
706
.10.1083/jcb.201004082
27.
Li
,
F.
,
Sun
,
X.
,
Zhao
,
B.
,
Ma
,
J.
,
Zhang
,
Y.
,
Li
,
S.
,
Li
,
Y.
, and
Ma
,
X.
,
2015
, “
Effects of Cyclic Tension Stress on the Apoptosis of Osteoclasts In Vitro
,”
Exp. Ther. Med.
,
9
(
5
), pp.
1955
1961
.10.3892/etm.2015.2338
28.
Bregenzer
,
M. E.
,
Horst
,
E. N.
,
Mehta
,
P.
,
Novak
,
C. M.
,
Repetto
,
T.
, and
Mehta
,
G.
,
2019
, “
The Role of Cancer Stem Cells and Mechanical Forces in Ovarian Cancer Metastasis
,”
Cancers
,
11
(
7
), p.
1008
.10.3390/cancers11071008
29.
Jain
,
R. K.
,
Martin
,
J. D.
, and
Stylianopoulos
,
T.
,
2014
, “
The Role of Mechanical Forces in Tumor Growth and Therapy
,”
Annu. Rev. Biomed. Eng.
,
16
(
1
), pp.
321
346
.10.1146/annurev-bioeng-071813-105259
30.
Ravasio
,
A.
,
Hobi
,
N.
,
Bertocchi
,
C.
,
Jesacher
,
A.
,
Dietl
,
P.
, and
Haller
,
T.
,
2011
, “
Interfacial Sensing by Alveolar Type II Cells: A New Concept in Lung Physiology?
,”
Am. J. Physiol.-Cell Physiol.
,
300
(
6
), pp.
C1456
C1465
.10.1152/ajpcell.00427.2010
31.
Chen
,
Z.
,
Song
,
Y.
,
Hu
,
Z.
,
Zhang
,
S.
, and
Chen
,
Y.
,
2015
, “
An Estimation of Mechanical Stress on Alveolar Walls During Repetitive Alveolar Reopening and Closure
,”
J. Appl. Physiol.
,
119
(
3
), pp.
190
201
.10.1152/japplphysiol.00112.2015
32.
Tarran
,
R.
,
Button
,
B.
, and
Boucher
,
R. C.
,
2006
, “
Regulation of Normal and Cystic Fibrosis Airway Surface Liquid Volume by Phasic Shear Stress
,”
Annu. Rev. Physiol.
,
68
(
1
), pp.
543
561
.10.1146/annurev.physiol.68.072304.112754
33.
Roan
,
E.
, and
Waters
,
C. M.
,
2011
, “
What Do We Know About Mechanical Strain in Lung Alveoli?
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
301
(
5
), pp.
L625
L635
.10.1152/ajplung.00105.2011
34.
Knudsen
,
L.
, and
Ochs
,
M.
,
2018
, “
The Micromechanics of Lung Alveoli: Structure and Function of Surfactant and Tissue Components
,”
Histochem. Cell Biol.
,
150
(
6
), pp.
661
676
.10.1007/s00418-018-1747-9
35.
Waters
,
C. M.
,
Roan
,
E.
, and
Navajas
,
D.
,
2012
, “
Mechanobiology in Lung Epithelial Cells: Measurements, Perturbations, and Responses
,”
Compr. Physiol.
,
2
(
1
), pp.
1
29
.10.1002/cphy.c100090
36.
Fredberg
,
J. J.
,
Inouye
,
D.
,
Miller
,
B.
,
Nathan
,
M.
,
Jafari
,
S.
,
Helioui Raboudi
,
S.
,
Butler
,
J. P.
, and
Shore
,
S. A.
,
1997
, “
Airway Smooth Muscle, Tidal Stretches, and Dynamically Determined Contractile States
,”
Am. J. Respir. Crit. Care Med.
,
156
(
6
), pp.
1752
1759
.10.1164/ajrccm.156.6.9611016
37.
Hughes
,
J. M.
,
Hoppin
,
F. G.
, and
Mead
,
J.
,
1972
, “
Effect of Lung Inflation on Bronchial Length and Diameter in Excised Lungs
,”
J. Appl. Physiol.
,
32
(
1
), pp.
25
35
.10.1152/jappl.1972.32.1.25
38.
Nieman
,
G. F.
,
Satalin
,
J.
,
Andrews
,
P.
,
Habashi
,
N. M.
, and
Gatto
,
L. A.
,
2016
, “
Lung Stress, Strain, and Energy Load: Engineering Concepts to Understand the Mechanism of Ventilator-Induced Lung Injury (VILI)
,”
Inten. Care Med. Exp.
,
4
(
1
), p.
16
.10.1186/s40635-016-0090-5
39.
Albert
,
R. K.
,
Smith
,
B.
,
Perlman
,
C. E.
, and
Schwartz
,
D. A.
,
2019
, “
Is Progression of Pulmonary Fibrosis Due to Ventilation-Induced Lung Injury?
,”
Am. J. Respir. Crit. Care Med.
,
200
(
2
), pp.
140
151
.10.1164/rccm.201903-0497PP
40.
Booth
,
A. J.
,
Hadley
,
R.
,
Cornett
,
A. M.
,
Dreffs
,
A. A.
,
Matthes
,
S. A.
,
Tsui
,
J. L.
,
Weiss
,
K.
,
Horowitz
,
J. C.
,
Fiore
,
V. F.
,
Barker
,
T. H.
,
Moore
,
B. B.
,
Martinez
,
F. J.
,
Niklason
,
L. E.
, and
White
,
E. S.
,
2012
, “
Acellular Normal and Fibrotic Human Lung Matrices as a Culture System for In Vitro Investigation
,”
Am. J. Respir. Crit. Care Med.
,
186
(
9
), pp.
866
876
.10.1164/rccm.201204-0754OC
41.
Birzle
,
A. M.
,
Martin
,
C.
,
Uhlig
,
S.
, and
Wall
,
W. A.
,
2019
, “
A Coupled Approach for Identification of Nonlinear and Compressible Material Models for Soft Tissue Based on Different Experimental Setups – Exemplified and Detailed for Lung Parenchyma
,”
J. Mech. Behav. Biomed. Mater.
,
94
, pp.
126
143
.10.1016/j.jmbbm.2019.02.019
42.
de Hilster
,
R. H. J.
,
Sharma
,
P. K.
,
Jonker
,
M. R.
,
White
,
E. S.
,
Gercama
,
E. A.
,
Roobeek
,
M.
,
Timens
,
W.
,
Harmsen
,
M. C.
,
Hylkema
,
M. N.
, and
Burgess
,
J. K.
,
2020
, “
Human Lung Extracellular Matrix Hydrogels Resemble the Stiffness and Viscoelasticity of Native Lung Tissue
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
318
(
4
), pp.
L698
L704
.10.1152/ajplung.00451.2019
43.
Browning
,
I. B.
,
D'Alonzo
,
G. E.
, and
Tobin
,
M. J.
,
1990
, “
Importance of Respiratory Rate as an Indicator of Respiratory Dysfunction in Patients With Cystic Fibrosis
,”
Chest
,
97
(
6
), pp.
1317
1321
.10.1378/chest.97.6.1317
44.
Doryab
,
A.
,
Tas
,
S.
,
Taskin
,
M. B.
,
Yang
,
L.
,
Hilgendorff
,
A.
,
Groll
,
J.
,
Wagner
,
D. E.
, and
Schmid
,
O.
,
2019
, “
Evolution of Bioengineered Lung Models: Recent Advances and Challenges in Tissue Mimicry for Studying the Role of Mechanical Forces in Cell Biology
,”
Adv. Funct. Mater.
,
29
(
39
), p.
1903114
.10.1002/adfm.201903114
45.
Al-Saiedy
,
M.
,
Gunasekara
,
L.
,
Green
,
F.
,
Pratt
,
R.
,
Chiu
,
A.
,
Yang
,
A.
,
Dennis
,
J.
,
Pieron
,
C.
,
Bjornson
,
C.
,
Winston
,
B.
, and
Amrein
,
M.
,
2018
, “
Surfactant Dysfunction in ARDS and Bronchiolitis is Repaired With Cyclodextrins
,”
Mil. Med.
,
183
(
suppl_1
), pp.
207
215
.10.1093/milmed/usx204
46.
Griese
,
M.
,
Essl
,
R.
,
Schmidt
,
R.
,
Ballmann
,
M.
,
Paul
,
K.
,
Rietschel
,
E.
, and
Ratjen
,
F.
, and
the Beat Study Group
,
2005
, “
Sequential Analysis of Surfactant, Lung Function and Inflammation in Cystic Fibrosis Patients
,”
Respir. Res.
,
6
(
1
), p.
133
.10.1186/1465-9921-6-133
47.
Kouranos
,
V.
,
Ward
,
S.
,
Kokosi
,
M. A.
,
Castillo
,
D.
,
Chua
,
F.
,
Judge
,
E. P.
,
Thomas
,
S.
,
Van Tonder
,
F.
,
Devaraj
,
A.
,
Nicholson
,
A. G.
,
Maher
,
T. M.
,
Renzoni
,
E. A.
, and
Wells
,
A. U.
,
2020
, “
Mixed Ventilatory Defects in Pulmonary Sarcoidosis: Prevalence and Clinical Features
,”
Chest
,
158
(
5
), pp.
2007
2014
.10.1016/j.chest.2020.04.074
48.
Umbrello
,
M.
,
Formenti
,
P.
,
Bolgiaghi
,
L.
, and
Chiumello
,
D.
,
2016
, “
Current Concepts of ARDS: A Narrative Review
,”
Int. J. Mol. Sci.
,
18
(
1
), p.
64
.10.3390/ijms18010064
49.
Em
,
N.
,
C
,
H.
,
Cs
,
B.
,
Gs
,
M.
,
Ph
,
S.
, and
Vl
,
C.
,
2002
, “
Acute Remodeling of Parenchyma in Pulmonary and Extrapulmonary ARDS. An Autopsy Study of Collagen-Elastic System Fibers
,”
Pathol. Res. Pract.
,
198
(
5
), pp.
355
361
.10.1078/0344-0338-00266
50.
Du
,
K.
,
2019
, “
Noninvasive Ventilation in Patients With Acute Respiratory Distress Syndrome
,”
Crit. Care
,
23
(
1
), p.
358
.10.1186/s13054-019-2666-4
51.
Mart
,
M. F.
, and
Ware
,
L. B.
,
2020
, “
The Long-Lasting Effects of the Acute Respiratory Distress Syndrome
,”
Expert Rev. Respir. Med.
,
14
(
6
), pp.
577
586
.10.1080/17476348.2020.1743182
52.
Chapman
,
D. G.
, and
Irvin
,
C. G.
,
2015
, “
Mechanisms of Airway Hyperresponsiveness in Asthma: The Past, Present and Yet to Come
,”
Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol.
,
45
(
4
), pp.
706
719
.10.1111/cea.12506
53.
Lauzon
,
A.-M.
, and
Martin
,
J. G.
,
2016
, “
Airway Hyperresponsiveness; Smooth Muscle as the Principal Actor
,”
F1000Research
,
5
, p.
306
.10.12688/f1000research.7422.1
54.
Kılıç
,
A.
,
Ameli
,
A.
,
Park
,
J.-A.
,
Kho
,
A. T.
,
Tantisira
,
K.
,
Santolini
,
M.
,
Cheng
,
F.
,
Mitchel
,
J. A.
,
McGill
,
M.
,
O'Sullivan
,
M. J.
,
De Marzio
,
M.
,
Sharma
,
A.
,
Randell
,
S. H.
,
Drazen
,
J. M.
,
Fredberg
,
J. J.
, and
Weiss
,
S. T.
,
2020
, “
Mechanical Forces Induce an Asthma Gene Signature in Healthy Airway Epithelial Cells
,”
Sci. Rep.
,
10
(
1
), p.
966
.10.1038/s41598-020-57755-8
55.
Veerati
,
P. C.
,
Mitchel
,
J. A.
,
Reid
,
A. T.
,
Knight
,
D. A.
,
Bartlett
,
N. W.
,
Park
,
J.-A.
, and
Grainge
,
C. L.
,
2020
, “
Airway Mechanical Compression: Its Role in Asthma Pathogenesis and Progression
,”
Eur. Respir. Rev.
,
29
(
157
), p. 190123.10.1183/16000617.0123-2019
56.
Boonpiyathad
,
T.
,
Sözener
,
Z. C.
,
Satitsuksanoa
,
P.
, and
Akdis
,
C. A.
,
2019
, “
Immunologic Mechanisms in Asthma
,”
Semin. Immunol.
,
46
, p.
101333
.10.1016/j.smim.2019.101333
57.
Wright
,
D.
,
Sharma
,
P.
,
Ryu
,
M.-H.
,
Rissé
,
P.-A.
,
Ngo
,
M.
,
Maarsingh
,
H.
,
Koziol-White
,
C.
,
Jha
,
A.
,
Halayko
,
A. J.
, and
West
,
A. R.
,
2013
, “
Models to Study Airway Smooth Muscle Contraction In Vivo, Ex Vivo and In Vitro: Implications in Understanding Asthma
,”
Pulm. Pharmacol. Ther.
,
26
(
1
), pp.
24
36
.10.1016/j.pupt.2012.08.006
58.
Barnes
,
P. J.
,
2008
, “
Immunology of Asthma and Chronic Obstructive Pulmonary Disease
,”
Nat. Rev. Immunol.
,
8
(
3
), pp.
183
192
.10.1038/nri2254
59.
Kaminsky
,
D. A.
,
2011
, “
Peripheral Lung Mechanics in Asthma: Exploring the Outer Limits
,”
Pulm. Pharmacol. Ther.
,
24
(
2
), pp.
199
202
.10.1016/j.pupt.2010.12.001
60.
Hamid
,
Q.
,
2012
, “
Pathogenesis of Small Airways in Asthma
,”
Respir. Basel
,
84
(
1
), pp.
4
11
.10.1159/000339550
61.
Mostaço-Guidolin
,
L. B.
,
Osei
,
E. T.
,
Ullah
,
J.
,
Hajimohammadi
,
S.
,
Fouadi
,
M.
,
Li
,
X.
,
Li
,
V.
,
Shaheen
,
F.
,
Yang
,
C. X.
,
Chu
,
F.
,
Cole
,
D. J.
,
Brandsma
,
C.-A.
,
Heijink
,
I. H.
,
Maksym
,
G. N.
,
Walker
,
D.
, and
Hackett
,
T.-L.
,
2019
, “
Defective Fibrillar Collagen Organization by Fibroblasts Contributes to Airway Remodeling in Asthma
,”
Am. J. Respir. Crit. Care Med.
,
200
(
4
), pp.
431
443
.10.1164/rccm.201810-1855OC
62.
Elias
,
J. A.
,
Zhu
,
Z.
,
Chupp
,
G.
, and
Homer
,
R. J.
,
1999
, “
Airway Remodeling in Asthma
,”
J. Clin. Invest.
,
104
(
8
), pp.
1001
1006
.10.1172/JCI8124
63.
Hayes
,
D.
,
2011
, “
A Review of Bronchiolitis Obliterans Syndrome and Therapeutic Strategies
,”
J. Cardiothorac. Surg.
,
6
(
1
), p.
92
.10.1186/1749-8090-6-92
64.
Sharples
,
L. D.
,
McNeil
,
K.
,
Stewart
,
S.
, and
Wallwork
,
J.
,
2002
, “
Risk Factors for Bronchiolitis Obliterans: A Systematic Review of Recent Publications
,”
J. Heart Lung Transplant.
,
21
(
2
), pp.
271
281
.10.1016/S1053-2498(01)00360-6
65.
Laohaburanakit
,
P.
,
Chan
,
A.
, and
Allen
,
R. P.
,
2003
, “
Bronchiolitis Obliterans
,”
Clin. Rev. Allergy Immunol.
,
25
(
3
), pp.
259
274
.10.1385/CRIAI:25:3:259
66.
National Institutes of Health, National Center for Advancing Translational Sciences,
2016
, “
Bronchiolitis Obliterans | Genetic and Rare Diseases Information Center (GARD) – An NCATS Program
,” Genetic and Rare Diseases Information Center, Gaithersburg, MD, accessed Aug. 14, 2020, https://rarediseases.info.nih.gov/diseases/9551/bronchiolitis-obliterans
67.
Kinsella
,
J. P.
,
Greenough
,
A.
, and
Abman
,
S. H.
,
2006
, “
Bronchopulmonary Dysplasia
,”
Lancet
,
367
(
9520
), pp.
1421
1431
.10.1016/S0140-6736(06)68615-7
68.
Thébaud
,
B.
,
Goss
,
K. N.
,
Laughon
,
M.
,
Whitsett
,
J. A.
,
Abman
,
S. H.
,
Steinhorn
,
R. H.
,
Aschner
,
J. L.
,
Davis
,
P. G.
,
McGrath-Morrow
,
S. A.
,
Soll
,
R. F.
, and
Jobe
,
A. H.
,
2019
, “
Bronchopulmonary Dysplasia
,”
Nat. Rev. Dis. Primer
,
5
(
1
), p.
78
.10.1038/s41572-019-0127-7
69.
Abman
,
S. H.
,
Bancalari
,
E.
, and
Jobe
,
A.
,
2017
, “
The Evolution of Bronchopulmonary Dysplasia After 50 Years
,”
Am. J. Respir. Crit. Care Med.
,
195
(
4
), pp.
421
424
.10.1164/rccm.201611-2386ED
70.
Lignelli
,
E.
,
Palumbo
,
F.
,
Myti
,
D.
, and
Morty
,
R. E.
,
2019
, “
Recent Advances in Our Understanding of the Mechanisms of Lung Alveolarization and Bronchopulmonary Dysplasia
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
317
(
6
), pp.
L832
L887
.10.1152/ajplung.00369.2019
71.
Halbert
,
R. J.
,
Natoli
,
J. L.
,
Gano
,
A.
,
Badamgarav
,
E.
,
Buist
,
A. S.
, and
Mannino
,
D. M.
,
2006
, “
Global Burden of COPD: Systematic Review and Meta-Analysis
,”
Eur. Respir. J.
,
28
(
3
), pp.
523
532
.10.1183/09031936.06.00124605
72.
World Health Organization,
2020
, “
The Top 10 Causes of Death
,” World Health Organization, Geneva, Switzerland, accessed Aug. 14, 2020, https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
73.
Alqahtani
,
J. S.
,
Oyelade
,
T.
,
Aldhahir
,
A. M.
,
Alghamdi
,
S. M.
,
Almehmadi
,
M.
,
Alqahtani
,
A. S.
,
Quaderi
,
S.
,
Mandal
,
S.
, and
Hurst
,
J. R.
,
2020
, “
Prevalence, Severity and Mortality Associated With COPD and Smoking in Patients With COVID-19: A Rapid Systematic Review and Meta-Analysis
,”
PLoS One
,
15
(
5
), p.
e0233147
.10.1371/journal.pone.0233147
74.
Tan
,
W. S. D.
,
Shen
,
H.-M.
, and
Wong
,
W. S. F.
,
2019
, “
Dysregulated Autophagy in COPD: A Pathogenic Process to Be Deciphered
,”
Pharmacol. Res.
,
144
, pp.
1
7
.10.1016/j.phrs.2019.04.005
75.
Uriarte
,
J. J.
,
Uhl
,
F. E.
,
Pouliot
,
R. A.
,
Bou Jawde
,
S. A M.
,
Rolandsson Enes
,
S.
,
Suki
,
B.
, and
Weiss
,
D. J.
,
2019
, “
Nanomechanical Assessment of Decellularized COPD Lung Scaffolds
,” A107. Engineered and Remodelled Matrix Compartments,
American Thoracic Society
, New York, pp.
A2557
A2557
.10.1164/ajrccm-conference.2019.199.1_MeetingAbstracts.A2557
76.
Rønnow
,
S. R.
,
Langholm
,
L. L.
,
Sand
,
J. M. B.
,
Thorlacius-Ussing
,
J.
,
Leeming
,
D. J.
,
Manon-Jensen
,
T.
,
Tal-Singer
,
R.
,
Miller
,
B. E.
,
Karsdal
,
M. A.
, and
Vestbo
,
J.
,
2019
, “
Specific Elastin Degradation Products Are Associated With Poor Outcome in the ECLIPSE COPD Cohort
,”
Sci. Rep.
,
9
(
1
), p.
4064
.10.1038/s41598-019-40785-2
77.
Burgess
,
J. K.
,
Mauad
,
T.
,
Tjin
,
G.
,
Karlsson
,
J. C.
, and
Westergren‐Thorsson
,
G.
,
2016
, “
The Extracellular Matrix – The Under‐Recognized Element in Lung Disease?
,”
J. Pathol.
,
240
(
4
), pp.
397
409
.10.1002/path.4808
78.
Günther
,
A.
,
Korfei
,
M.
,
Mahavadi
,
P.
,
Beck
,
D. von der
,
Ruppert
,
C.
, and
Markart
,
P.
,
2012
, “
Unravelling the Progressive Pathophysiology of Idiopathic Pulmonary Fibrosis
,”
Eur. Respir. Rev.
,
21
(
124
), pp.
152
160
.10.1183/09059180.00001012
79.
Ley
,
B.
,
Collard
,
H. R.
, and
King
,
T. E.
,
2011
, “
Clinical Course and Prediction of Survival in Idiopathic Pulmonary Fibrosis
,”
Am. J. Respir. Crit. Care Med.
,
183
(
4
), pp.
431
440
.10.1164/rccm.201006-0894CI
80.
Deng
,
Z.
,
Fear
,
M. W.
,
Suk Choi
,
Y.
,
Wood
,
F. M.
,
Allahham
,
A.
,
Mutsaers
,
S. E.
, and
Prêle
,
C. M.
,
2020
, “
The Extracellular Matrix and Mechanotransduction in Pulmonary Fibrosis
,”
Int. J. Biochem. Cell Biol.
,
126
, p.
105802
.10.1016/j.biocel.2020.105802
81.
Taveira-Dasilva
,
A. M.
,
Steagall
,
W. K.
, and
Moss
,
J.
,
2006
, “
Lymphangioleiomyomatosis
,”
Cancer Control
,
13
(
4
), pp.
276
285
.10.1177/107327480601300405
82.
Glasgow
,
C. G.
,
Taveira–DaSilva
,
A.
,
Pacheco–Rodriguez
,
G.
,
Steagall
,
W. K.
,
Tsukada
,
K.
,
Cai
,
X.
,
El–Chemaly
,
S.
, and
Moss
,
J.
,
2009
, “
Involvement of Lymphatics in Lymphangioleiomyomatosis
,”
Lymphat. Res. Biol.
,
7
(
4
), pp.
221
228
.10.1089/lrb.2009.0017
83.
Xu
,
K.-F.
,
Xu
,
W.
,
Liu
,
S.
,
Yu
,
J.
,
Tian
,
X.
,
Yang
,
Y.
,
Wang
,
S.-T.
,
Zhang
,
W.
,
Feng
,
R.
, and
Zhang
,
T.
,
2020
, “
Lymphangioleiomyomatosis
,”
Semin. Respir. Crit. Care Med.
,
41
(
02
), pp.
256
268
.10.1055/s-0040-1702195
84.
Gopalakrishnan
,
V.
,
Yao
,
J.
,
Steagall
,
W. K.
,
Avila
,
N. A.
,
Taveira-DaSilva
,
A. M.
,
Stylianou
,
M.
,
Chen
,
M. Y.
, and
Moss
,
J.
,
2019
, “
Use of CT Imaging to Quantify Progression and Response to Treatment in Lymphangioleiomyomatosis
,”
Chest
,
155
(
5
), pp.
962
971
.10.1016/j.chest.2019.01.004
85.
Weber
,
E.
,
Sozio
,
F.
,
Borghini
,
A.
,
Sestini
,
P.
, and
Renzoni
,
E.
,
2018
, “
Pulmonary Lymphatic Vessel Morphology: A Review
,”
Ann. Anat. Anat. Anz.
,
218
, pp.
110
117
.10.1016/j.aanat.2018.02.011
86.
Taveira-Dasilva
,
A. M.
, and
Moss
,
J.
,
2016
, “
Epidemiology, Pathogenesis and Diagnosis of Lymphangioleiomyomatosis
,”
Expert Opin. Orphan Drugs
,
4
(
4
), pp.
369
378
.10.1517/21678707.2016.1148597
87.
James
,
W. E.
, and
Judson
,
M. A.
,
2020
, “
Therapeutic Strategies for Pulmonary Sarcoidosis
,”
Expert Rev. Respir. Med.
,
14
(
4
), pp.
391
403
.10.1080/17476348.2020.1721284
88.
Spagnolo
,
P.
,
Rossi
,
G.
,
Trisolini
,
R.
,
Sverzellati
,
N.
,
Baughman
,
R. P.
, and
Wells
,
A. U.
,
2018
, “
Pulmonary Sarcoidosis
,”
Lancet Respir. Med.
,
6
(
5
), pp.
389
402
.10.1016/S2213-2600(18)30064-X
89.
Lynch
,
J. P.
,
Kazerooni
,
E. A.
, and
Gay
,
S. E.
,
1997
, “
Pulmonary Sarcoidosis
,”
Clin. Chest Med.
,
18
(
4
), pp.
755
785
.10.1016/S0272-5231(05)70417-2
90.
Laohaburanakit
,
P.
, and
Chan
,
A.
,
2003
, “
Obstructive Sarcoidosis
,”
Clin. Rev. Allergy Immunol.
,
25
(
2
), pp.
115
129
.10.1385/CRIAI:25:2:115
91.
Nieman
,
G. F.
,
Satalin
,
J.
,
Andrews
,
P.
,
Aiash
,
H.
,
Habashi
,
N. M.
, and
Gatto
,
L. A.
,
2017
, “
Personalizing Mechanical Ventilation According to Physiologic Parameters to Stabilize Alveoli and MinimizeVentilator Induced Lung Injury (VILI)
,”
Inten. Care Med. Exp.
,
5
(
1
), pp.
1
21
.10.1186/s40635-017-0121-x
92.
Gaver
,
D. P.
,
Nieman
,
G. F.
,
Gatto
,
L. A.
,
Cereda
,
M.
,
Habashi
,
N. M.
, and
Bates
,
J. H. T.
,
2020
, “
The POOR Get POORer: A Hypothesis for the Pathogenesis of Ventilator-Induced Lung Injury
,”
Am. J. Respir. Crit. Care Med.
,
202
(
8
), pp.
1081
1087
.10.1164/rccm.202002-0453CP
93.
McGuinness
,
G.
,
Zhan
,
C.
,
Rosenberg
,
N.
,
Azour
,
L.
,
Wickstrom
,
M.
,
Mason
,
D. M.
,
Thomas
,
K. M.
, and
Moore
,
W. H.
,
2020
, “
High Incidence of Barotrauma in Patients With COVID-19 Infection on Invasive Mechanical Ventilation
,”
Radiology
,
297
(
2
), pp.
E252
E262
.10.1148/radiol.2020202352
94.
Madahar
,
P.
, and
Beitler
,
J. R.
,
2020
, “
Emerging Concepts in Ventilation-Induced Lung Injury
,”
F1000Research
,
9
, p.
222
.10.12688/f1000research.20576.1
95.
Ghadiali
,
S. N.
, and
Gaver
,
D. P.
,
2008
, “
Biomechanics of Liquid–Epithelium Interactions in Pulmonary Airways
,”
Respir. Physiol. Neurobiol.
,
163
(
1–3
), pp.
232
243
.10.1016/j.resp.2008.04.008
96.
Hager
,
D. N.
,
Krishnan
,
J. A.
,
Hayden
,
D. L.
, and
Brower
,
R. G.
,
2005
, “
Tidal Volume Reduction in Patients With Acute Lung Injury When Plateau Pressures Are Not High
,”
Am. J. Respir. Crit. Care Med.
,
172
(
10
), pp.
1241
1245
.10.1164/rccm.200501-048CP
97.
Ghadiali
,
S. N.
, and
Huang
,
Y.
,
2011
, “
Role of Airway Recruitment and Derecruitment in Lung Injury
,”
Crit. Rev. Biomed. Eng.
,
39
(
4
), pp.
297
318
.10.1615/CritRevBiomedEng.v39.i4.40
98.
Walkey
,
A. J.
,
Del Sorbo
,
L.
,
Hodgson
,
C. L.
,
Adhikari
,
N. K. J.
,
Wunsch
,
H.
,
Meade
,
M. O.
,
Uleryk
,
E.
,
Hess
,
D.
,
Talmor
,
D. S.
,
Thompson
,
B. T.
,
Brower
,
R. G.
, and
Fan
,
E.
,
2017
, “
Higher PEEP Versus Lower PEEP Strategies for Patients With Acute Respiratory Distress Syndrome. A Systematic Review and Meta-Analysis
,”
Ann. Am. Thorac. Soc.
,
14
(
Suppl_4
), pp.
S297
S303
.10.1513/AnnalsATS.201704-338OT
99.
Herold
,
S.
,
Becker
,
C.
,
Ridge
,
K. M.
, and
Budinger
,
G. R. S.
,
2015
, “
Influenza Virus-Induced Lung Injury: Pathogenesis and Implications for Treatment
,”
Eur. Respir. J.
,
45
(
5
), pp.
1463
1478
.10.1183/09031936.00186214
100.
Cruces
,
P.
,
Retamal
,
J.
,
Hurtado
,
D. E.
,
Erranz
,
B.
,
Iturrieta
,
P.
,
González
,
C.
, and
Díaz
,
F.
,
2020
, “
A Physiological Approach to Understand the Role of Respiratory Effort in the Progression of Lung Injury in SARS-CoV-2 Infection
,”
Crit. Care
,
24
(
1
), p.
494
.10.1186/s13054-020-03197-7
101.
Yen
,
S.
,
Preissner
,
M.
,
Bennett
,
E.
,
Dubsky
,
S.
,
Carnibella
,
R.
,
O'Toole
,
R.
,
Roddam
,
L.
,
Jones
,
H.
,
Dargaville
,
P. A.
,
Fouras
,
A.
, and
Zosky
,
G. R.
,
2019
, “
The Link Between Regional Tidal Stretch and Lung Injury During Mechanical Ventilation
,”
Am. J. Respir. Cell Mol. Biol.
,
60
(
5
), pp.
569
577
.10.1165/rcmb.2018-0143OC
102.
Pociask
,
D. A.
,
Robinson
,
K. M.
,
Chen
,
K.
,
McHugh
,
K. J.
,
Clay
,
M. E.
,
Huang
,
G. T.
,
Benos
,
P. V.
,
Janssen-Heininger
,
Y. M. W.
,
Kolls
,
J. K.
,
Anathy
,
V.
, and
Alcorn
,
J. F.
,
2017
, “
Epigenetic and Transcriptomic Regulation of Lung Repair During Recovery From Influenza Infection
,”
Am. J. Pathol.
,
187
(
4
), pp.
851
863
.10.1016/j.ajpath.2016.12.012
103.
Grillo
,
F.
,
Barisione
,
E.
,
Ball
,
L.
,
Mastracci
,
L.
, and
Fiocca
,
R.
,
2020
, “
Lung Fibrosis: An Undervalued Finding in COVID-19 Pathological Series
,”
Lancet Infect. Dis.
, 21(4), p. e72.10.1016/S1473-3099(20)30582-X
104.
Oudin
,
S.
, and
Pugin
,
J.
,
2002
, “
Role of MAP Kinase Activation in Interleukin-8 Production by Human BEAS-2B Bronchial Epithelial Cells Submitted to Cyclic Stretch
,”
Am. J. Respir. Cell Mol. Biol.
,
27
(
1
), pp.
107
114
.10.1165/ajrcmb.27.1.4766
105.
Chaturvedi
,
L. S.
,
Marsh
,
H. M.
, and
Basson
,
M. D.
,
2007
, “
SRC and Focal Adhesion Kinase Mediate Mechanical Strain-Induced Proliferation and ERK1/2 Phosphorylation in Human H441 Pulmonary Epithelial Cells
,”
Am. J. Physiol. Cell Physiol.
,
292
(
5
), pp.
C1701
C1713
.10.1152/ajpcell.00529.2006
106.
Chess
,
P. R.
,
Toia
,
L.
, and
Finkelstein
,
J. N.
,
2000
, “
Mechanical Strain-Induced Proliferation and Signaling in Pulmonary Epithelial H441 Cells
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
279
(
1
), pp.
L43
L51
.10.1152/ajplung.2000.279.1.L43
107.
Chess
,
P. R.
,
O'Reilly
,
M. A.
,
Sachs
,
F.
, and
Finkelstein
,
J. N.
,
2005
, “
Reactive Oxidant and P42/44 MAP Kinase Signaling is Necessary for Mechanical Strain-Induced Proliferation in Pulmonary Epithelial Cells
,”
J. Appl. Physiol.
,
99
(
3
), pp.
1226
1232
.10.1152/japplphysiol.01105.2004
108.
Ward
,
K. K.
,
Tancioni
,
I.
,
Lawson
,
C.
,
Miller
,
N. L. G.
,
Jean
,
C.
,
Chen
,
X. L.
,
Uryu
,
S.
,
Kim
,
J.
,
Tarin
,
D.
,
Stupack
,
D. G.
,
Plaxe
,
S. C.
, and
Schlaepfer
,
D. D.
,
2013
, “
Inhibition of Focal Adhesion Kinase (FAK) Activity Prevents Anchorage-Independent Ovarian Carcinoma Cell Growth and Tumor Progression
,”
Clin. Exp. Metastasis
,
30
(
5
), pp.
579
594
.10.1007/s10585-012-9562-5
109.
Xiong
,
N.
,
Li
,
S.
,
Tang
,
K.
,
Bai
,
H.
,
Peng
,
Y.
,
Yang
,
H.
,
Wu
,
C.
, and
Liu
,
Y.
,
2017
, “
Involvement of Caveolin-1 in Low Shear Stress-Induced Breast Cancer Cell Motility and Adhesion: Roles of FAK/Src and ROCK/p-MLC Pathways
,”
Biochim. Biophys. Acta BBA Mol. Cell Res.
,
1864
(
1
), pp.
12
22
.10.1016/j.bbamcr.2016.10.013
110.
Zebda
,
N.
,
Dubrovskyi
,
O.
, and
Birukov
,
K. G.
,
2012
, “
Focal Adhesion Kinase Regulation of Mechanotransduction and Its Impact on Endothelial Cell Functions
,”
Microvasc. Res.
,
83
(
1
), pp.
71
81
.10.1016/j.mvr.2011.06.007
111.
Finkel
,
T.
,
2011
, “
Signal Transduction by Reactive Oxygen Species
,”
J. Cell Biol.
,
194
(
1
), pp.
7
15
.10.1083/jcb.201102095
112.
Felder
,
M.
,
Trueeb
,
B.
,
Stucki
,
A. O.
,
Borcard
,
S.
,
Stucki
,
J. D.
,
Schnyder
,
B.
,
Geiser
,
T.
, and
Guenat
,
O. T.
,
2019
, “
Impaired Wound Healing of Alveolar Lung Epithelial Cells in a Breathing Lung-On-A-Chip
,”
Front. Bioeng. Biotechnol.
,
7
, p.
3
.10.3389/fbioe.2019.00003
113.
Tschumperlin
,
D. J.
, and
Margulies
,
S. S.
,
1998
, “
Equibiaxial Deformation-Induced Injury of Alveolar Epithelial Cells In Vitro
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
275
(
6
), pp.
L1173
L1183
.10.1152/ajplung.1998.275.6.L1173
114.
Oswari
,
J.
,
Matthay
,
M. A.
, and
Margulies
,
S. S.
,
2001
, “
Keratinocyte Growth Factor Reduces Alveolar Epithelial Susceptibility to In Vitro Mechanical Deformation
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
281
(
5
), pp.
L1068
L1077
.10.1152/ajplung.2001.281.5.L1068
115.
Rápalo
,
G.
,
Herwig
,
J. D.
,
Hewitt
,
R.
,
Wilhelm
,
K. R.
,
Waters
,
C. M.
, and
Roan
,
E.
,
2015
, “
Live Cell Imaging During Mechanical Stretch
,”
J. Vis. Exp. JoVE
, (
102
), p.
52737
.10.3791/52737
116.
Huang
,
Y.
,
Haas
,
C.
, and
Ghadiali
,
S. N.
,
2010
, “
Influence of Transmural Pressure and Cytoskeletal Structure on NF-ΚB Activation in Respiratory Epithelial Cells
,”
Cell. Mol. Bioeng.
,
3
(
4
), pp.
415
427
.10.1007/s12195-010-0138-7
117.
Mahto
,
S. K.
,
Tenenbaum-Katan
,
J.
,
Greenblum
,
A.
,
Rothen-Rutishauser
,
B.
, and
Sznitman
,
J.
,
2014
, “
Microfluidic Shear Stress-Regulated Surfactant Secretion in Alveolar Epithelial Type II Cells In Vitro
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
306
(
7
), pp.
L672
L683
.10.1152/ajplung.00106.2013
118.
Huh
,
D.
,
Matthews
,
B. D.
,
Mammoto
,
A.
,
Montoya-Zavala
,
M.
,
Hsin
,
H. Y.
, and
Ingber
,
D. E.
,
2010
, “
Reconstituting Organ-Level Lung Functions on a Chip
,”
Science
,
328
(
5986
), pp.
1662
1668
.10.1126/science.1188302
119.
Felder
,
E.
,
Siebenbrunner
,
M.
,
Busch
,
T.
,
Fois
,
G.
,
Miklavc
,
P.
,
Walther
,
P.
, and
Dietl
,
P.
,
2008
, “
Mechanical Strain of Alveolar Type II Cells in Culture: Changes in the Transcellular Cytokeratin Network and Adaptations
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
295
(
5
), pp.
L849
L857
.10.1152/ajplung.00503.2007
120.
Ng
,
C. P.
, and
Swartz
,
M. A.
,
2003
, “
Fibroblast Alignment Under Interstitial Fluid Flow Using a Novel 3-D Tissue Culture Model
,”
Am. J. Physiol. Heart Circ. Physiol.
,
284
(
5
), pp.
H1771
H1777
.10.1152/ajpheart.01008.2002
121.
Arora
,
H.
,
Mitchell
,
R. L.
,
Johnston
,
R.
,
Manolesos
,
M.
,
Howells
,
D.
,
Sherwood
,
J. M.
,
Bodey
,
A. J.
, and
Wanelik
,
K.
,
2021
, “
Correlating Local Volumetric Tissue Strains With Global Lung Mechanics Measurements
,”
Materials
,
14
(
2
), p.
439
.10.3390/ma14020439
122.
Mariano
,
C. A.
,
Sattari
,
S.
,
Maghsoudi-Ganjeh
,
M.
,
Tartibi
,
M.
,
Lo
,
D. D.
, and
Eskandari
,
M.
,
2020
, “
Novel Mechanical Strain Characterization of Ventilated Ex Vivo Porcine and Murine Lung Using Digital Image Correlation
,”
Front. Physiol.
,
11
, p.
600492
.10.3389/fphys.2020.600492
123.
Chess
,
P. R.
,
O'Reilly
,
M. A.
, and
Toia
,
L.
,
2004
, “
Macroarray Analysis Reveals a Strain-Induced Oxidant Response in Pulmonary Epithelial Cells
,”
Exp. Lung Res.
,
30
(
8
), pp.
739
753
.10.1080/01902140490517782
124.
Chapman
,
K. E.
,
Sinclair
,
S. E.
,
Zhuang
,
D.
,
Hassid
,
A.
,
Desai
,
L. P.
, and
Waters
,
C. M.
,
2005
, “
Cyclic Mechanical Strain Increases Reactive Oxygen Species Production in Pulmonary Epithelial Cells
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
289
(
5
), pp.
L834
L841
.10.1152/ajplung.00069.2005
125.
Hu
,
X.
,
Zhang
,
Y.
,
Cheng
,
D.
,
Ding
,
Y.
,
Yang
,
D.
,
Jiang
,
F.
,
Zhou
,
C.
,
Ying
,
B.
, and
Wen
,
F.
,
2008
, “
Mechanical Stress Upregulates Intercellular Adhesion Molecule-1 in Pulmonary Epithelial Cells
,”
Respiration
,
76
(
3
), pp.
344
350
.10.1159/000137509
126.
Tsuda
,
A.
,
Stringer
,
B. K.
,
Mijailovich
,
S. M.
,
Rogers
,
R. A.
,
Hamada
,
K.
, and
Gray
,
M. L.
,
1999
, “
Alveolar Cell Stretching in the Presence of Fibrous Particles Induces Interleukin-8 Responses
,”
Am. J. Respir. Cell Mol. Biol.
,
21
(
4
), pp.
455
462
.10.1165/ajrcmb.21.4.3351
127.
Pugin
,
J.
,
Dunn
,
I.
,
Jolliet
,
P.
,
Tassaux
,
D.
,
Magnenat
,
J.-L.
,
Nicod
,
L. P.
, and
Chevrolet
,
J.-C.
,
1998
, “
Activation of Human Macrophages by Mechanical Ventilation In Vitro
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
275
(
6
), pp.
L1040
L1050
.10.1152/ajplung.1998.275.6.L1040
128.
Rentzsch
,
I.
,
Santos
,
C. L.
,
Huhle
,
R.
,
Ferreira
,
J. M. C.
,
Koch
,
T.
,
Schnabel
,
C.
,
Koch
,
E.
,
Pelosi
,
P.
,
Rocco
,
P. R. M.
, and
Abreu
,
M. G. de
,
2017
, “
Variable Stretch Reduces the Pro-Inflammatory Response of Alveolar Epithelial Cells
,”
PLoS One
,
12
(
8
), p.
e0182369
.10.1371/journal.pone.0182369
129.
Waters
,
C. M.
,
Ridge
,
K. M.
,
Sunio
,
G.
,
Venetsanou
,
K.
, and
Sznajder
,
J. I.
,
1999
, “
Mechanical Stretching of Alveolar Epithelial Cells Increases Na+-K+-ATPase Activity
,”
J. Appl. Physiol.
,
87
(
2
), pp.
715
721
.10.1152/jappl.1999.87.2.715
130.
Nalayanda
,
D. D.
,
Puleo
,
C. M.
,
Fulton
,
W. B.
,
Wang
,
T.-H.
, and
Abdullah
,
F.
,
2007
, “
Characterization of Pulmonary Cell Growth Parameters in a Continuous Perfusion Microfluidic Environment
,”
Exp. Lung Res.
,
33
(
6
), pp.
321
335
.10.1080/01902140701557754
131.
Ridge
,
K. M.
,
Linz
,
L.
,
Flitney
,
F. W.
,
Kuczmarski
,
E. R.
,
Chou
,
Y.-H.
,
Omary
,
M. B.
,
Sznajder
,
J. I.
, and
Goldman
,
R. D.
,
2005
, “
Keratin 8 Phosphorylation by Protein Kinase C δ Regulates Shear Stress-Mediated Disassembly of Keratin Intermediate Filaments in Alveolar Epithelial Cells
,”
J. Biol. Chem.
,
280
(
34
), pp.
30400
30405
.10.1074/jbc.M504239200
132.
Flitney
,
E. W.
,
Kuczmarski
,
E. R.
,
Adam
,
S. A.
, and
Goldman
,
R. D.
,
2009
, “
Insights Into the Mechanical Properties of Epithelial Cells: The Effects of Shear Stress on the Assembly and Remodeling of Keratin Intermediate Filaments
,”
Faseb J.
,
23
(
7
), pp.
2110
2119
.10.1096/fj.08-124453
133.
Sivaramakrishnan
,
S.
,
Schneider
,
J. L.
,
Sitikov
,
A.
,
Goldman
,
R. D.
, and
Ridge
,
K. M.
,
2009
, “
Shear Stress Induced Reorganization of the Keratin Intermediate Filament Network Requires Phosphorylation by Protein Kinase C ζ
,”
Mol. Biol. Cell
,
20
(
11
), pp.
2755
2765
.10.1091/mbc.e08-10-1028
134.
Bilek
,
A. M.
,
Dee
,
K. C.
, and
Gaver
,
D. P.
,
2003
, “
Mechanisms of Surface-Tension-Induced Epithelial Cell Damage in a Model of Pulmonary Airway Reopening
,”
J. Appl. Physiol.
,
94
(
2
), pp.
770
783
.10.1152/japplphysiol.00764.2002
135.
Kay
,
S. S.
,
Bilek
,
A. M.
,
Dee
,
K. C.
, and
Gaver
,
D. P.
,
2004
, “
Pressure Gradient, Not Exposure Duration, Determines the Extent of Epithelial Cell Damage in a Model of Pulmonary Airway Reopening
,”
J. Appl. Physiol.
,
97
(
1
), pp.
269
276
.10.1152/japplphysiol.01288.2003
136.
Yalcin
,
H. C.
,
Perry
,
S. F.
, and
Ghadiali
,
S. N.
,
2007
, “
Influence of Airway Diameter and Cell Confluence on Epithelial Cell Injury in an In Vitro Model of Airway Reopening
,”
J. Appl. Physiol.
,
103
(
5
), pp.
1796
1807
.10.1152/japplphysiol.00164.2007
137.
Yalcin
,
H. C.
,
Hallow
,
K. M.
,
Wang
,
J.
,
Wei
,
M. T.
,
Ou-Yang
,
H. D.
, and
Ghadiali
,
S. N.
,
2009
, “
Influence of Cytoskeletal Structure and Mechanics on Epithelial Cell Injury During Cyclic Airway Reopening
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
297
(
5
), pp.
L881
L891
.10.1152/ajplung.90562.2008
138.
Higuita-Castro
,
N.
,
Shukla
,
V. C.
,
Mihai
,
C.
, and
Ghadiali
,
S. N.
,
2016
, “
Simvastatin Treatment Modulates Mechanically-Induced Injury and Inflammation in Respiratory Epithelial Cells
,”
Ann. Biomed. Eng.
,
44
(
12
), pp.
3632
3644
.10.1007/s10439-016-1693-4
139.
Viola
,
H.
,
Chang
,
J.
,
Grunwell
,
J. R.
,
Hecker
,
L.
,
Tirouvanziam
,
R.
,
Grotberg
,
J. B.
, and
Takayama
,
S.
,
2019
, “
Microphysiological Systems Modeling Acute Respiratory Distress Syndrome That Capture Mechanical Force-Induced Injury-Inflammation-Repair
,”
APL Bioeng.
,
3
(
4
), p.
041503
.10.1063/1.5111549
140.
Tschumperlin
,
D. J.
,
Shively
,
J. D.
,
Swartz
,
M. A.
,
Silverman
,
E. S.
,
Haley
,
K. J.
,
Raab
,
G.
, and
Drazen
,
J. M.
,
2002
, “
Bronchial Epithelial Compression Regulates MAP Kinase Signaling and HB-EGF-Like Growth Factor Expression
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
282
(
5
), pp.
L904
L911
.10.1152/ajplung.00270.2001
141.
Chu
,
E. K.
,
Foley
,
J. S.
,
Cheng
,
J.
,
Patel
,
A. S.
,
Drazen
,
J. M.
, and
Tschumperlin
,
D. J.
,
2005
, “
Bronchial Epithelial Compression Regulates Epidermal Growth Factor Receptor Family Ligand Expression in an Autocrine Manner
,”
Am. J. Respir. Cell Mol. Biol.
,
32
(
5
), pp.
373
380
.10.1165/rcmb.2004-0266OC
142.
Savla
,
U.
, and
Waters
,
C. M.
,
1998
, “
Mechanical Strain Inhibits Repair of Airway Epithelium In Vitro
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
274
(
6
), pp.
L883
L892
.10.1152/ajplung.1998.274.6.L883
143.
Eisenberg
,
J. L.
,
Safi
,
A.
,
Wei
,
X.
,
Espinosa
,
H. D.
,
Budinger
,
G. S.
,
Takawira
,
D.
,
Hopkinson
,
S. B.
, and
Jones
,
J. C.
,
2011
, “
Substrate Stiffness Regulates Extracellular Matrix Deposition by Alveolar Epithelial Cells
,”
Res. Rep. Biol.
,
2011
(
2
), pp.
1
12
. 10.2147/RRB.S13178
144.
Markowski
,
M. C.
,
Brown
,
A. C.
, and
Barker
,
T. H.
,
2012
, “
Directing Epithelial to Mesenchymal Transition Through Engineered Microenvironments Displaying Orthogonal Adhesive and Mechanical Cues
,”
J. Biomed. Mater. Res. A
,
100A
(
8
), pp.
2119
2127
.10.1002/jbm.a.34068
145.
Dysart
,
M. M.
,
Galvis
,
B. R.
,
Russell
,
A. G.
, and
Barker
,
T. H.
,
2014
, “
Environmental Particulate (PM2.5) Augments Stiffness-Induced Alveolar Epithelial Cell Mechanoactivation of Transforming Growth Factor Beta
,”
PLoS One
,
9
(
9
), p.
e106821
.10.1371/journal.pone.0106821
146.
Higuita-Castro
,
N.
,
Mihai
,
C.
,
Hansford
,
D. J.
, and
Ghadiali
,
S. N.
,
2014
, “
Influence of Airway Wall Compliance on Epithelial Cell Injury and Adhesion During Interfacial Flows
,”
J. Appl. Physiol.
,
117
(
11
), pp.
1231
1242
.10.1152/japplphysiol.00752.2013
147.
Wu
,
J.
,
Yan
,
Z.
,
Schwartz
,
D. E.
,
Yu
,
J.
,
Malik
,
A. B.
, and
Hu
,
G.
,
2013
, “
Activation of NLRP3 Inflammasome in Alveolar Macrophages Contributes to Mechanical Stretch-Induced Lung Inflammationand Injury
,”
J. Immunol. Baltim. Md. 1950
,
190
(
7
), pp.
3590
3599
.10.4049/jimmunol.1200860
148.
Ballotta
,
V.
,
Driessen-Mol
,
A.
,
Bouten
,
C. V. C.
, and
Baaijens
,
F. P. T.
,
2014
, “
Strain-Dependent Modulation of Macrophage Polarization Within Scaffolds
,”
Biomaterials
,
35
(
18
), pp.
4919
4928
.10.1016/j.biomaterials.2014.03.002
149.
Matheson
,
L. A.
,
Jack Fairbank
,
N.
,
Maksym
,
G. N.
,
Paul Santerre
,
J.
, and
Labow
,
R. S.
,
2006
, “
Characterization of the FlexcellTM UniflexTM Cyclic Strain Culture System With U937 Macrophage-Like Cells
,”
Biomaterials
,
27
(
2
), pp.
226
233
.10.1016/j.biomaterials.2005.05.070
150.
Pakshir
,
P.
,
Alizadehgiashi
,
M.
,
Wong
,
B.
,
Coelho
,
N. M.
,
Chen
,
X.
,
Gong
,
Z.
,
Shenoy
,
V. B.
,
McCulloch
,
C. A.
, and
Hinz
,
B.
,
2019
, “
Dynamic Fibroblast Contractions Attract Remote Macrophages in Fibrillar Collagen Matrix
,”
Nat. Commun.
,
10
(
1
), pp.
1
17
.10.1038/s41467-019-09709-6
151.
Chen
,
M.
,
Zhang
,
Y.
,
Zhou
,
P.
,
Liu
,
X.
,
Zhao
,
H.
,
Zhou
,
X.
,
Gu
,
Q.
,
Li
,
B.
,
Zhu
,
X.
, and
Shi
,
Q.
,
2020
, “
Substrate Stiffness Modulates Bone Marrow-Derived Macrophage Polarization Through NF-ΚB Signaling Pathway
,”
Bioact. Mater.
,
5
(
4
), pp.
880
890
.10.1016/j.bioactmat.2020.05.004
152.
Féréol
,
S.
,
Fodil
,
R.
,
Labat
,
B.
,
Galiacy
,
S.
,
Laurent
,
V. M.
,
Louis
,
B.
,
Isabey
,
D.
, and
Planus
,
E.
,
2006
, “
Sensitivity of Alveolar Macrophages to Substrate Mechanical and Adhesive Properties
,”
Cell Motil.
,
63
(
6
), pp.
321
340
.10.1002/cm.20130
153.
Sridharan
,
R.
,
Cavanagh
,
B.
,
Cameron
,
A. R.
,
Kelly
,
D. J.
, and
O'Brien
,
F. J.
,
2019
, “
Material Stiffness Influences the Polarization State, Function and Migration Mode of Macrophages
,”
Acta Biomater.
,
89
, pp.
47
59
.10.1016/j.actbio.2019.02.048
154.
Adams
,
S.
,
Wuescher
,
L. M.
,
Worth
,
R.
, and
Yildirim-Ayan
,
E.
,
2019
, “
Mechano-Immunomodulation: Mechanoresponsive Changes in Macrophage Activity and Polarization
,”
Ann. Biomed. Eng.
,
47
(
11
), pp.
2213
2231
.10.1007/s10439-019-02302-4
155.
Sanchez-Esteban
,
J.
,
Wang
,
Y.
,
Cicchiello
,
L. A.
, and
Rubin
,
L. P.
,
2002
, “
Cyclic Mechanical Stretch Inhibits Cell Proliferation and Induces Apoptosis in Fetal Rat Lung Fibroblasts
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
282
(
3
), pp.
L448
L456
.10.1152/ajplung.00399.2000
156.
Breen
,
E. C.
,
2000
, “
Mechanical Strain Increases Type I Collagen Expression in Pulmonary Fibroblasts In Vitro
,”
J. Appl. Physiol.
,
88
(
1
), pp.
203
209
.10.1152/jappl.2000.88.1.203
157.
Webb
,
K.
,
Hitchcock
,
R. W.
,
Smeal
,
R. M.
,
Li
,
W.
,
Gray
,
S. D.
, and
Tresco
,
P. A.
,
2006
, “
Cyclic Strain Increases Fibroblast Proliferation, Matrix Accumulation, and Elastic Modulus of Fibroblast-Seeded Polyurethane Constructs
,”
J. Biomech.
,
39
(
6
), pp.
1136
1144
.10.1016/j.jbiomech.2004.08.026
158.
Blaauboer
,
M. E.
,
Smit
,
T. H.
,
Hanemaaijer
,
R.
,
Stoop
,
R.
, and
Everts
,
V.
,
2011
, “
Cyclic Mechanical Stretch Reduces Myofibroblast Differentiation of Primary Lung Fibroblasts
,”
Biochem. Biophys. Res. Commun.
,
404
(
1
), pp.
23
27
.10.1016/j.bbrc.2010.11.033
159.
Manuyakorn
,
W.
,
Smart
,
D. E.
,
Noto
,
A.
,
Bucchieri
,
F.
,
Haitchi
,
H. M.
,
Holgate
,
S. T.
,
Howarth
,
P. H.
, and
Davies
,
D. E.
,
2016
, “
Mechanical Strain Causes Adaptive Change in Bronchial Fibroblasts Enhancing Profibrotic and Inflammatory Responses
,”
PLoS One
,
11
(
4
), p.
e0153926
.10.1371/journal.pone.0153926
160.
Lee
,
J. S. H.
,
Chang
,
M. I.
,
Tseng
,
Y.
, and
Wirtz
,
D.
,
2005
, “
Cdc42 Mediates Nucleus Movement and MTOC Polarization in Swiss 3T3 Fibroblasts Under Mechanical Shear Stress
,”
Mol. Biol. Cell
,
16
(
2
), pp.
871
880
.10.1091/mbc.e03-12-0910
161.
Ingber
,
D. E.
,
2008
, “
Tensegrity-Based Mechanosensing From Macro to Micro
,”
Prog. Biophys. Mol. Biol.
,
97
(
2–3
), pp.
163
179
.10.1016/j.pbiomolbio.2008.02.005
162.
Marinković
,
A.
,
Liu
,
F.
, and
Tschumperlin
,
D. J.
,
2013
, “
Matrices of Physiologic Stiffness Potently Inactivate Idiopathic Pulmonary Fibrosis Fibroblasts
,”
Am. J. Respir. Cell Mol. Biol.
,
48
(
4
), pp.
422
430
.10.1165/rcmb.2012-0335OC
163.
Huang
,
X.
,
Yang
,
N.
,
Fiore
,
V. F.
,
Barker
,
T. H.
,
Sun
,
Y.
,
Morris
,
S. W.
,
Ding
,
Q.
,
Thannickal
,
V. J.
, and
Zhou
,
Y.
,
2012
, “
Matrix Stiffness–Induced Myofibroblast Differentiation is Mediated by Intrinsic Mechanotransduction
,”
Am. J. Respir. Cell Mol. Biol.
,
47
(
3
), pp.
340
348
.10.1165/rcmb.2012-0050OC
164.
Matera
,
D. L.
,
DiLillo
,
K. M.
,
Smith
,
M. R.
,
Davidson
,
C. D.
,
Parikh
,
R.
,
Said
,
M.
,
Wilke
,
C. A.
,
Lombaert
,
I. M.
,
Arnold
,
K. B.
,
Moore
,
B. B.
, and
Baker
,
B. M.
,
2020
, “
Microengineered 3D Pulmonary Interstitial Mimetics Highlight a Critical Role for Matrix Degradation in Myofibroblast Differentiation
,”
Sci. Adv.
,
6
(
37
), p.
eabb5069
.10.1126/sciadv.abb5069
165.
Noguchi
,
S.
,
Saito
,
A.
,
Mikami
,
Y.
,
Urushiyama
,
H.
,
Horie
,
M.
,
Matsuzaki
,
H.
,
Takeshima
,
H.
,
Makita
,
K.
,
Miyashita
,
N.
,
Mitani
,
A.
,
Jo
,
T.
,
Yamauchi
,
Y.
,
Terasaki
,
Y.
, and
Nagase
,
T.
,
2017
, “
TAZ Contributes to Pulmonary Fibrosis by Activating Profibrotic Functions of Lung Fibroblasts
,”
Sci. Rep.
,
7
(
1
), p.
42595
.10.1038/srep42595
166.
Chen
,
H.
,
Qu
,
J.
,
Huang
,
X.
,
Kurundkar
,
A.
,
Zhu
,
L.
,
Yang
,
N.
,
Venado
,
A.
,
Ding
,
Q.
,
Liu
,
G.
,
Antony
,
V. B.
,
Thannickal
,
V. J.
, and
Zhou
,
Y.
,
2016
, “
Mechanosensing by the α 6 -Integrin Confers an Invasive Fibroblast Phenotype and Mediates Lung Fibrosis
,”
Nat. Commun.
,
7
(
1
), p.
12564
.10.1038/ncomms12564
167.
Tschumperlin
,
D. J.
, and
Drazen
,
J. M.
,
2001
, “
Mechanical Stimuli to Airway Remodeling
,”
Am. J. Respir. Crit. Care Med.
,
164
(
Suppl_2
), pp.
S90
S94
.10.1164/ajrccm.164.supplement_2.2106060
168.
Kito
,
H.
,
Chen
,
E. L.
,
Wang
,
X.
,
Ikeda
,
M.
,
Azuma
,
N.
,
Nakajima
,
N.
,
Gahtan
,
V.
, and
Sumpio
,
B. E.
,
2000
, “
Role of Mitogen-Activated Protein Kinases in Pulmonary Endothelial Cells Exposed to Cyclic Strain
,”
J. Appl. Physiol.
,
89
(
6
), pp.
2391
2400
.10.1152/jappl.2000.89.6.2391
169.
Ochoa
,
C. D.
,
Baker
,
H.
,
Hasak
,
S.
,
Matyal
,
R.
,
Salam
,
A.
,
Hales
,
C. A.
,
Hancock
,
W.
, and
Quinn
,
D. A.
,
2008
, “
Cyclic Stretch Affects Pulmonary Endothelial Cell Control of Pulmonary Smooth Muscle Cell Growth
,”
Am. J. Respir. Cell Mol. Biol.
,
39
(
1
), pp.
105
112
.10.1165/rcmb.2007-0283OC
170.
Iwaki
,
M.
,
Ito
,
S.
,
Morioka
,
M.
,
Iwata
,
S.
,
Numaguchi
,
Y.
,
Ishii
,
M.
,
Kondo
,
M.
,
Kume
,
H.
,
Naruse
,
K.
,
Sokabe
,
M.
, and
Hasegawa
,
Y.
,
2009
, “
Mechanical Stretch Enhances IL-8 Production in Pulmonary Microvascular Endothelial Cells
,”
Biochem. Biophys. Res. Commun.
,
389
(
3
), pp.
531
536
.10.1016/j.bbrc.2009.09.020
171.
Tian
,
Y.
,
Gawlak
,
G.
,
O'Donnell
,
J. J.
,
Mambetsariev
,
I.
, and
Birukova
,
A. A.
,
2016
, “
Modulation of Endothelial Inflammation by Low and High Magnitude Cyclic Stretch
,”
PLoS One
,
11
(
4
), p.
e0153387
.10.1371/journal.pone.0153387
172.
Birukov
,
K. G.
,
Jacobson
,
J. R.
,
Flores
,
A. A.
,
Ye
,
S. Q.
,
Birukova
,
A. A.
,
Verin
,
A. D.
, and
Garcia
,
J. G. N.
,
2003
, “
Magnitude-Dependent Regulation of Pulmonary Endothelial Cell Barrier Function by Cyclic Stretch
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
285
(
4
), pp.
L785
L797
.10.1152/ajplung.00336.2002
173.
Gorfien
,
S. F.
,
Winston
,
F. K.
,
Thibault
,
L. E.
, and
Macarak
,
E. J.
,
1989
, “
Effects of Biaxial Deformation on Pulmonary Artery Endothelial Cells
,”
J. Cell. Physiol.
,
139
(
3
), pp.
492
500
.10.1002/jcp.1041390307
174.
Wang
,
J. H.-C.
,
Goldschmidt-Clermont
,
P.
,
Wille
,
J.
, and
Yin
,
F. C.-P.
,
2001
, “
Specificity of Endothelial Cell Reorientation in Response to Cyclic Mechanical Stretching
,”
J. Biomech.
,
34
(
12
), pp.
1563
1572
.10.1016/S0021-9290(01)00150-6
175.
Ito
,
S.
,
Suki
,
B.
,
Kume
,
H.
,
Numaguchi
,
Y.
,
Ishii
,
M.
,
Iwaki
,
M.
,
Kondo
,
M.
,
Naruse
,
K.
,
Hasegawa
,
Y.
, and
Sokabe
,
M.
,
2010
, “
Actin Cytoskeleton Regulates Stretch-Activated Ca2+ Influx in Human Pulmonary Microvascular Endothelial Cells
,”
Am. J. Respir. Cell Mol. Biol.
,
43
(
1
), pp.
26
34
.10.1165/rcmb.2009-0073OC
176.
Russo
,
T. A.
,
Stoll
,
D.
,
Nader
,
H. B.
, and
Dreyfuss
,
J. L.
,
2018
, “
Mechanical Stretch Implications for Vascular Endothelial Cells: Altered Extracellular Matrix Synthesis and Remodeling in Pathological Conditions
,”
Life Sci.
,
213
, pp.
214
225
.10.1016/j.lfs.2018.10.030
177.
Szulcek
,
R.
,
Happé
,
C. M.
,
Rol
,
N.
,
Fontijn
,
R. D.
,
Dickhoff
,
C.
,
Hartemink
,
K. J.
,
Grünberg
,
K.
,
Tu
,
L.
,
Timens
,
W.
,
Nossent
,
G. D.
,
Paul
,
M. A.
,
Leyen
,
T. A.
,
Horrevoets
,
A. J.
,
de Man
,
F. S.
,
Guignabert
,
C.
,
Yu
,
P. B.
,
Vonk-Noordegraaf
,
A.
,
Amerongen
,
G. P. V N.
, and
Bogaard
,
H. J.
,
2016
, “
Delayed Microvascular Shear Adaptation in Pulmonary Arterial Hypertension. Role of Platelet Endothelial Cell Adhesion Molecule-1 Cleavage
,”
Am. J. Respir. Crit. Care Med.
,
193
(
12
), pp.
1410
1420
.10.1164/rccm.201506-1231OC
178.
Birukov
,
K. G.
,
Birukova
,
A. A.
,
Dudek
,
S. M.
,
Verin
,
A. D.
,
Crow
,
M. T.
,
Zhan
,
X.
,
DePaola
,
N.
, and
Garcia
,
J. G. N.
,
2002
, “
Shear Stress-Mediated Cytoskeletal Remodeling and Cortactin Translocation in Pulmonary Endothelial Cells
,”
Am. J. Respir. Cell Mol. Biol.
,
26
(
4
), pp.
453
464
.10.1165/ajrcmb.26.4.4725
179.
Schilling
,
W. P.
,
Mo
,
M.
, and
Eskin
,
S. G.
,
1992
, “
Effect of Shear Stress on Cytosolic Ca2+ of Calf Pulmonary Artery Endothelial Cells
,”
Exp. Cell Res.
,
198
(
1
), pp.
31
35
.10.1016/0014-4827(92)90145-X
180.
Yamamoto
,
K.
,
Sokabe
,
T.
,
Ohura
,
N.
,
Nakatsuka
,
H.
,
Kamiya
,
A.
, and
Ando
,
J.
,
2003
, “
Endogenously Released ATP Mediates Shear Stress-Induced Ca2+ Influx Into Pulmonary Artery Endothelial Cells
,”
Am. J. Physiol. Heart Circ. Physiol.
,
285
(
2
), pp.
H793
H803
.10.1152/ajpheart.01155.2002
181.
Yamamoto
,
K.
,
Imamura
,
H.
, and
Ando
,
J.
,
2018
, “
Shear Stress Augments Mitochondrial ATP Generation That Triggers ATP Release and Ca2+ Signaling in Vascular Endothelial Cells
,”
Am. J. Physiol. Heart Circ. Physiol.
,
315
(
5
), pp.
H1477
H1485
.10.1152/ajpheart.00204.2018
182.
Tran
,
Q.-K.
, and
Watanabe
,
H.
,
2006
, “
Calcium Signalling in the Endothelium
,”
The Vascular Endothelium
,
I. S.
Moncada
, and
A.
Higgs
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
145
187
.
183.
Kumar
,
S.
,
Sud
,
N.
,
Fonseca
,
F. V.
,
Hou
,
Y.
, and
Black
,
S. M.
,
2010
, “
Shear Stress Stimulates Nitric Oxide Signaling in Pulmonary Arterial Endothelial Cells Via a Reduction in Catalase Activity: Role of Protein Kinase Cδ
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
298
(
1
), pp.
L105
L116
.10.1152/ajplung.00290.2009
184.
Tousoulis
,
D.
,
Kampoli
,
A.-M.
,
Tentolouris
,
C.
,
Papageorgiou
,
N.
, and
Stefanadis
,
C.
,
2012
, “
The Role of Nitric Oxide on Endothelial Function
,”
Curr. Vasc. Pharmacol.
,
10
(
1
), pp.
4
18
.10.2174/157016112798829760
185.
Song
,
J.
,
Hu
,
B.
,
Qu
,
H.
,
Wang
,
L.
,
Huang
,
X.
,
Li
,
M.
, and
Zhang
,
M.
,
2020
, “
Upregulation of Angiotensin Converting Enzyme 2 by Shear Stress Reduced Inflammation and Proliferation in Vascular Endothelial Cells
,”
Biochem. Biophys. Res. Commun.
,
525
(
3
), pp.
812
818
.10.1016/j.bbrc.2020.02.151
186.
Charbonier
,
F. W.
,
Zamani
,
M.
, and
Huang
,
N. F.
,
2019
, “
Endothelial Cell Mechanotransduction in the Dynamic Vascular Environment
,”
Adv. Biosyst.
,
3
(
2
), p.
1800252
.10.1002/adbi.201800252
187.
Wu
,
D.
, and
Birukov
,
K.
,
2019
, “
Endothelial Cell Mechano-Metabolomic Coupling to Disease States in the Lung Microvasculature
,”
Front. Bioeng. Biotechnol.
,
7
, p.
172
.10.3389/fbioe.2019.00172
188.
Fisher
,
A. B.
,
Al-Mehdi
,
A. B.
, and
Manevich
,
Y.
,
2002
, “
Shear Stress and Endothelial Cell Activation
,”
Crit. Care Med.
,
30
(
5 Suppl
), pp.
S192
S197
.10.1097/00003246-200205001-00004
189.
Salwen
,
S. A.
,
Szarowski
,
D. H.
,
Turner
,
J. N.
, and
Bizios
,
R.
,
1998
, “
Three-Dimensional Changes of the Cytoskeleton of Vascular Endothelial Cells Exposed to Sustained Hydrostatic Pressure
,”
Med. Biol. Eng. Comput.
,
36
(
4
), pp.
520
527
.10.1007/BF02523225
190.
Ohashi
,
T.
,
Sugaya
,
Y.
,
Sakamoto
,
N.
, and
Sato
,
M.
,
2007
, “
Hydrostatic Pressure Influences Morphology and Expression of VE-Cadherin of Vascular Endothelial Cells
,”
J. Biomech.
,
40
(
11
), pp.
2399
2405
.10.1016/j.jbiomech.2006.11.023
191.
Acevedo
,
A. D.
,
Bowser
,
S. S.
,
Gerritsen
,
M. E.
, and
Bizios
,
R.
,
1993
, “
Morphological and Proliferative Responses of Endothelial Cells to Hydrostatic Pressure: Role of Fibroblast Growth Factor
,”
J. Cell. Physiol.
,
157
(
3
), pp.
603
614
.10.1002/jcp.1041570321
192.
Sumpio
,
B. E.
,
Widmann
,
M. D.
,
Ricotta
,
J.
,
Awolesi
,
M. A.
, and
Watase
,
M.
,
1994
, “
Increased Ambient Pressure Stimulates Proliferation and Morphologic Changes in Cultured Endothelial Cells
,”
J. Cell. Physiol.
,
158
(
1
), pp.
133
139
.10.1002/jcp.1041580117
193.
Schwartz
,
E. A.
,
Bizios
,
R.
,
Medow
,
M. S.
, and
Gerritsen
,
M. E.
,
1999
, “
Exposure of Human Vascular Endothelial Cells to Sustained Hydrostatic Pressure Stimulates Proliferation
,”
Circ. Res.
,
84
(
3
), pp.
315
322
.10.1161/01.RES.84.3.315
194.
Shin
,
H. Y.
,
Smith
,
M. L.
,
Toy
,
K. J.
,
Williams
,
P. M.
,
Bizios
,
R.
, and
Gerritsen
,
M. E.
,
2002
, “
VEGF-C Mediates Cyclic Pressure-Induced Endothelial Cell Proliferation
,”
Physiol. Genomics
,
11
(
3
), pp.
245
251
.10.1152/physiolgenomics.00068.2002
195.
Wille
,
J. J.
,
Ambrosi
,
C. M.
, and
Yin
,
F. C.-P.
,
2004
, “
Comparison of the Effects of Cyclic Stretching and Compression on Endothelial Cell Morphological Responses
,”
ASME J. Biomech. Eng.
,
126
(
5
), pp.
545
551
.10.1115/1.1798053
196.
Bertero
,
T.
,
Oldham
,
W. M.
,
Cottrill
,
K. A.
,
Pisano
,
S.
,
Vanderpool
,
R. R.
,
Yu
,
Q.
,
Zhao
,
J.
,
Tai
,
Y.
,
Tang
,
Y.
,
Zhang
,
Y.-Y.
,
Rehman
,
S.
,
Sugahara
,
M.
,
Qi
,
Z.
,
Gorcsan
,
J.
,
Vargas
,
S. O.
,
Saggar
,
R.
,
Saggar
,
R.
,
Wallace
,
W. D.
,
Ross
,
D. J.
,
Haley
,
K. J.
,
Waxman
,
A. B.
,
Parikh
,
V. N.
,
Marco
,
T. D.
,
Hsue
,
P. Y.
,
Morris
,
A.
,
Simon
,
M. A.
,
Norris
,
K. A.
,
Gaggioli
,
C.
,
Loscalzo
,
J.
,
Fessel
,
J.
, and
Chan
,
S. Y.
,
2016
, “
Vascular Stiffness Mechanoactivates Yap/TAZ-Dependent Glutaminolysis to Drive Pulmonary Hypertension
,”
J. Clin. Invest.
,
126
(
9
), pp.
3313
3335
.10.1172/JCI86387
197.
Thenappan
,
T.
,
Chan
,
S. Y.
, and
Weir
,
E. K.
,
2018
, “
Role of Extracellular Matrix in the Pathogenesis of Pulmonary Arterial Hypertension
,”
Am. J. Physiol. Heart Circ. Physiol.
,
315
(
5
), pp.
H1322
H1331
.10.1152/ajpheart.00136.2018
198.
Lampi
,
M. C.
,
Guvendiren
,
M.
,
Burdick
,
J. A.
, and
Reinhart-King
,
C. A.
,
2017
, “
Photopatterned Hydrogels to Investigate the Endothelial Cell Response to Matrix Stiffness Heterogeneity
,”
ACS Biomater. Sci. Eng.
,
3
(
11
), pp.
3007
3016
.10.1021/acsbiomaterials.6b00633
199.
Birukova
,
A. A.
,
Tian
,
X.
,
Cokic
,
I.
,
Beckham
,
Y.
,
Gardel
,
M. L.
, and
Birukov
,
K. G.
,
2013
, “
Endothelial Barrier Disruption and Recovery is Controlled by Substrate Stiffness
,”
Microvasc. Res.
,
87
, pp.
50
57
.10.1016/j.mvr.2012.12.006
200.
Mambetsariev
,
I.
,
Tian
,
Y.
,
Wu
,
T.
,
Lavoie
,
T.
,
Solway
,
J.
,
Birukov
,
K. G.
, and
Birukova
,
A. A.
,
2014
, “
Stiffness-Activated GEF-H1 Expression Exacerbates LPS-Induced Lung Inflammation
,”
PLoS One
,
9
(
4
), p.
e92670
.10.1371/journal.pone.0092670
201.
Vion
,
A. C.
,
Birukova
,
A. A.
,
Boulanger
,
C. M.
, and
Birukov
,
K. G.
,
2013
, “
Mechanical Forces Stimulate Endothelial Microparticle Generation Via Caspase-Dependent Apoptosis-Independent Mechanism
,”
Pulm. Circ.
,
3
(
1
), pp.
95
99
.10.4103/2045-8932.109921
202.
Huh
,
D.
,
Fujioka
,
H.
,
Tung
,
Y.-C.
,
Futai
,
N.
,
Paine
,
R.
,
Grotberg
,
J. B.
, and
Takayama
,
S.
,
2007
, “
Acoustically Detectable Cellular-Level Lung Injury Induced by Fluid Mechanical Stresses in Microfluidic Airway Systems
,”
Proc. Natl. Acad. Sci. U. S. A.
,
104
(
48
), pp.
18886
18891
.10.1073/pnas.0610868104
203.
Belete, H. A., Godin, L. M., Stroetz, R. W., and Hubmayr, R. D., 2010, “Experimental Models to Study Cell Wounding and Repair,”
Cell Physiol. Biochem.
, 25(1), pp. 71–80.10.1159/000272052
204.
Tavana
,
H.
,
Zamankhan
,
P.
,
Christensen
,
P. J.
,
Grotberg
,
J. B.
, and
Takayama
,
S.
,
2011
, “
Epithelium Damage and Protection During Reopening of Occluded Airways in a Physiologic Microfluidic Pulmonary Airway Model
,”
Biomed. Microdev.
,
13
(
4
), pp.
731
742
.10.1007/s10544-011-9543-5
205.
Fakhouri
,
F.
,
Dong
,
H.
, and
Kolipaka
,
A.
,
2019
, “
Magnetic Resonance Elastography of the Lungs: A Repeatability and Reproducibility Study
,”
NMR Biomed.
,
32
(
7
), p.
e4102
.10.1002/nbm.4102
206.
Marinelli
,
J. P.
,
Levin
,
D. L.
,
Vassallo
,
R.
,
Carter
,
R. E.
,
Hubmayr
,
R. D.
,
Ehman
,
R. L.
, and
McGee
,
K. P.
,
2017
, “
Quantitative Assessment of Lung Stiffness in Patients With Interstitial Lung Disease Using MR Elastography
,”
J. Magn. Reson. Imaging
,
46
(
2
), pp.
365
374
.10.1002/jmri.25579
207.
Zhou
,
B.
,
Yang
,
X.
,
Zhang
,
X.
,
Curran
,
W. J.
, and
Liu
,
T.
,
2020
, “
Ultrasound Elastography for Lung Disease Assessment
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
67
(
11
), pp.
2249
2257
.10.1109/TUFFC.2020.3026536
You do not currently have access to this content.