Abstract

This study presents the influence of control parameters including population (NP) size, mutation factor (F), crossover (Cr), and four types of differential evolution (DE) algorithms including random, best, local-to-best, and local-to-best with self-adaptive (SA) modification for the purpose of optimizing the compositions of dimethylsufloxide (DMSO)-free cryoprotectants. Post-thaw recovery of Jurkat cells cryopreserved with two DMSO-free cryoprotectants at a cooling rate of 1 °C/min displayed a nonlinear, four-dimensional structure with multiple saddle nodes, which was a suitable training model to tune the control parameters and select the most appropriate type of differential evolution algorithm. Self-adaptive modification presented better performance in terms of optimization accuracy and sensitivity of mutation factor and crossover among the four different types of algorithms tested. Specifically, the classical type of differential evolution algorithm exhibited a wide acceptance to mutation factor and crossover. The optimization performance is more sensitive to mutation than crossover and the optimization accuracy is proportional to the population size. Increasing population size also reduces the sensitivity of the algorithm to the value of the mutation factor and crossover. The analysis of optimization accuracy and convergence speed suggests larger population size with F > 0.7 and Cr > 0.3 are well suited for use with cryopreservation optimization purposes. The tuned differential evolution algorithm is validated through finding global maximums of other two DMSO-free cryoprotectant formulation datasets. The results of these studies can be used to help more efficiently determine the optimal composition of multicomponent DMSO-free cryoprotectants in the future.

References

1.
Yong
,
K. W.
,
Wan Safwani
,
W. K. Z.
,
Xu
,
F.
,
Wan Abas
,
W. A. B.
,
Choi
,
J. R.
, and
Pingguan-Murphy
,
B.
,
2015
, “
Cryopreservation of Human Mesenchymal Stem Cells for Clinical Applications: Current Methods and Challenges
,”
Biopreserv. Biobank.
,
13
(
4
), pp.
231
239
.10.1089/bio.2014.0104
2.
Elliott
,
G. D.
,
Wang
,
S.
, and
Fuller
,
B. J.
,
2017
, “
Cryoprotectants: A Review of the Actions and Applications of Cryoprotective Solutes That Modulate Cell Recovery From Ultra-Low Temperatures
,”
Cryobiology
,
76
, pp.
74
91
.10.1016/j.cryobiol.2017.04.004
3.
Scott
,
K. L.
,
Lecak
,
J.
, and
Acker
,
J. P.
,
2005
, “
Biopreservation of Red Blood Cells: Past, Present, and Future
,”
Transfus. Med. Rev.
,
19
(
2
), pp.
127
142
.10.1016/j.tmrv.2004.11.004
4.
Alencar
,
S.
,
Garnica
,
M.
,
Luiz
,
R. R.
,
Nogueira
,
C. M.
,
Borojevic
,
R.
,
Maiolino
,
A.
, and
Dutra
,
H. S.
,
2010
, “
Cryopreservation of Peripheral Blood Stem Cell: The Influence of Cell Concentration on Cellular and Hematopoietic Recovery
,”
Transfusion
,
50
(
11
), pp.
2402
2412
.10.1111/j.1537-2995.2010.02743.x
5.
Hubel
,
A.
,
1997
, “
Parameters of Cell Freezing: Implications for the Cryopreservation of Stem Cells
,”
Transfus. Med. Rev.
,
11
(
3
), pp.
224
233
.10.1053/tmrv.1997.0110224
6.
Hanna
,
J.
, and
Hubel
,
A.
,
2009
, “
Preservation of Stem Cells
,”
Organogenesis
,
5
(
3
), pp.
134
137
.10.4161/org.5.3.9585
7.
Hubel
,
A.
,
2017
,
Preservation of Cells: A Practical Manual
,
John Wiley & Sons
,
Hoboken, NJ
.
8.
Lawson
,
A.
,
Mukherjee
,
I. N.
, and
Sambanis
,
A.
,
2012
, “
Mathematical Modeling of Cryoprotectant Addition and Removal for the Cryopreservation of Engineered or Natural Tissues
,”
Cryobiology
,
64
(
1
), pp.
1
11
.10.1016/j.cryobiol.2011.11.006
9.
Anderson
,
D. M.
,
Benson
,
J. D.
, and
Kearsley
,
A. J.
,
2014
, “
Foundations of Modeling in Cryobiology-I: Concentration, Gibbs Energy, and Chemical Potential Relationships
,”
Cryobiology
,
69
(
3
), pp.
349
360
.10.1016/j.cryobiol.2014.09.004
10.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution—a Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), pp.
341
359
.10.1023/A:1008202821328
11.
Das
,
S.
, and
Suganthan
,
P. N.
,
2011
, “
Differential Evolution: A Survey of the State-of-the-Art
,”
IEEE Trans. Evol. Comput.
,
15
(
1
), pp.
4
31
.10.1109/TEVC.2010.2059031
12.
Lichtblau
,
D.
,
2012
, “
Differential Evolution in Discrete Optimization
,”
Int. J. Swarm Intell. Evol. Comput.
,
1
, pp.
1
10
.10.4303/ijsiec/Z110301
13.
 
Zhang
,
J.
,
Avasarala
,
V.
,
Sanderson
,
A. C.
, and
Mullen
,
T.
,
2008
, “
Differential Evolution for Discrete Optimization: An Experimental Study on Combinatorial Auction Problems
,”
IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)
, Hong Kong, China, June 1–6, pp.
2794
2800
.10.1109/CEC.2008.4631173
14.
Das
,
S.
,
Mullick
,
S. S.
, and
Suganthan
,
P. N.
,
2016
, “
Recent Advances in Differential Evolution—An Updated Survey
,”
Swarm Evol. Comput.
,
27
, pp.
1
30
.10.1016/j.swevo.2016.01.004
15.
Tsutsui
,
H.
,
Valamehr
,
B.
,
Hindoyan
,
A.
,
Qiao
,
R.
,
Ding
,
X.
,
Guo
,
S.
,
Witte
,
O. N.
,
Liu
,
X.
,
Ho
,
C. M.
, and
Wu
,
H.
,
2011
, “
An Optimized Small Molecule Inhibitor Cocktail Supports Long-Term Maintenance of Human Embryonic Stem Cells
,”
Nat. Commun.
,
2
(
1
), pp.
167
168
.10.1038/ncomms1165
16.
Pollock
,
K.
,
Budenske
,
J. W.
,
McKenna
,
D. H.
,
Dosa
,
P. I.
, and
Hubel
,
A.
,
2017
, “
Algorithm-Driven Optimization of Cryopreservation Protocols for Transfusion Model Cell Types Including Jurkat Cells and Mesenchymal Stem Cells
,”
J. Tissue Eng. Regen. Med.
,
11
(
10
), pp.
2806
2815
.10.1002/term.2175
17.
Pollock
,
K.
,
Samsonraj
,
R. M.
,
Dudakovic
,
A.
,
Thaler
,
R.
,
Stumbras
,
A.
,
McKenna
,
D. H.
,
Dosa
,
P. I.
,
van Wijnen
,
A. J.
, and
Hubel
,
A.
,
2017
, “
Improved Post-Thaw Function and Epigenetic Changes in Mesenchymal Stromal Cells Cryopreserved Using Multicomponent Osmolyte Solutions
,”
Stem Cells Dev.
,
26
(
11
), pp.
828
842
.10.1089/scd.2016.0347
18.
Pi
,
C.-H.
,
Yu
,
G.
,
Petersen
,
A.
, and
Hubel
,
A.
,
2018
, “
Characterizing the ‘Sweet Spot’ for the Preservation of a T-Cell Line Using Osmolytes
,”
Sci. Rep.
,
8
(
1
), p.
16223
.10.1038/s41598-018-34638-7
19.
Pi
,
C.-H.
,
Yu
,
G.
,
Dosa
,
P. I.
, and
Hubel
,
A.
,
2019
, “
Characterizing Modes of Action and Interaction for Multicomponent Osmolyte Solutions on Jurkat Cells
,”
Biotechnol. Bioeng.
,
116
(
3
), pp.
631
643
.10.1002/bit.26880
20.
Qin
,
A. K.
, and
Suganthan
,
P. N.
,
2005
, “
Self-Adaptive Differential Evolution Algorithm for Numerical Optimization
,”
IEEE Congress on Evolutionary Computation
, Edinburgh, Scotland, UK, Sept.
2
5
.10.1109/CEC.2005.1554904
21.
Brest
,
J.
,
Greiner
,
S.
,
Boskovic
,
B.
,
Mernik
,
M.
, and
Zumer
,
V.
,
2006
, “
Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems
,”
IEEE Trans. Evol. Comput.
,
10
(
6
), pp.
646
657
.10.1109/TEVC.2006.872133
22.
Pollock
,
K.
,
Yu
,
G.
,
Moller-Trane
,
R.
,
Koran
,
M.
,
Dosa
,
P. I.
,
McKenna
,
D. H.
, and
Hubel
,
A.
,
2016
, “
Combinations of Osmolytes, Including Monosaccharides, Disaccharides, and Sugar Alcohols Act in Concert During Cryopreservation to Improve Mesenchymal Stromal Cell Survival
,”
Tissue Eng., Part C
,
22
(
11
), pp.
999
1008
.10.1089/ten.tec.2016.0284
23.
Brest
,
J.
, and
Maučec
,
M. S.
,
2011
, “
Self-Adaptive Differential Evolution Algorithm Using Population Size Reduction and Three Strategies
,”
Soft Comput.
,
15
(
11
), pp.
2157
2174
.10.1007/s00500-010-0644-5
24.
Wong
,
I.
,
Liu
,
W.
,
Ho
,
C. M.
, and
Ding
,
X.
,
2017
, “
Continuous Adaptive Population Reduction (CAPR) for Differential Evolution Optimization
,”
SLAS Technol.
,
22
(
3
), pp.
289
305
.10.1177/2472630317690318
25.
Lin
,
C.
,
Qing
,
A.
, and
Feng
,
Q.
,
2011
, “
A Comparative Study of Crossover in Differential Evolution
,”
J. Heuristics
,
17
(
6
), pp.
675
703
.10.1007/s10732-010-9151-1
26.
Sreedhar
,
D.
, and
Binu Rajan
,
M. R.
,
2013
, “
Differential Evolution Based Multiobjective Optimization-A Review
,”
Int. J. Comput. Appl.
,
63
(
15
), pp.
14
19
.10.5120/10541-5019
27.
Robič
,
T.
, and
Filipič
,
B.
,
2005
, “
DEMO: Differential Evolution for Multiobjective Optimization
,” C. A. Coello Coello, A. Hernández Aguirre, and E. Zitzler, eds., Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, Vol. 3410, Springer, Berlin.
28.
Babu
,
B. V.
, and
Gujrathi
,
A. M.
,
2018
, “
Multi-Objective Differential Evolution (MODE) Algorithm for Multi-Objective Optimization: Parametric Study on Benchmark Test Problems
,” i-Manager's,
J. Future Eng. Technol.
,
3
(
1
), pp.
47
59
.10.26634/jfet.3.1.697
29.
Badu
,
B. V.
, and
Anabarasu
,
B.
,
2006
, “
Multi-Objective Differential Evolution (MODE): An Evolutionary Algorithm for Multi-Objective Optimization Problems (MOOPs)
,”
Evolution
(New York),
31
, pp.
1
7
.https://pdfs.semanticscholar.org/7556/d8196f16576531ac95549e1d38bf94bd39b5.pdf
You do not currently have access to this content.