Abstract

A wide range of emerging therapies, from surgical restraint to biomaterial injection to tissue engineering, aim to improve heart function and limit adverse remodeling following myocardial infarction (MI). We previously showed that longitudinal surgical reinforcement of large anterior infarcts in dogs could significantly enhance systolic function without restricting diastolic function, but the underlying mechanisms for this improvement are poorly understood. The goal of this study was to construct a finite element model that could match our previously published data on changes in regional strains and left ventricular function following longitudinal surgical reinforcement, then use the model to explore potential mechanisms for the improvement in systolic function we observed. The model presented here, implemented in febio, matches all the key features of our experiments, including diastolic remodeling strains in the ischemic region, small shifts in the end-diastolic pressure–volume relationship (EDPVR), and large changes in the end-systolic pressure–volume relationship (ESPVR) in response to ischemia and to patch application. Detailed examination of model strains and stresses suggests that longitudinal reinforcement reduces peak diastolic fiber stretch and systolic fiber stress in the remote myocardium and shifts those peaks away from the endocardial surface by reshaping the left ventricle (LV). These findings could help to guide the development of novel therapies to improve post-MI function by providing specific design objectives.

References

1.
Benjamin
,
E. J.
,
Virani
,
S. S.
,
Callaway
,
C. W.
,
Chamberlain
,
A. M.
,
Chang
,
A. R.
,
Cheng
,
S.
,
Chiuve
,
S. E.
,
Cushman
,
M.
,
Delling
,
F. N.
,
Deo
,
R.
,
de Ferranti
,
S. D.
,
Ferguson
,
J. F.
,
Fornage
,
M.
,
Gillespie
,
C.
,
Cushman
,
M.
,
Isasi
,
C. R.
,
Jiménez
,
M. C.
,
Jordan
,
L. C.
,
Judd
,
A. E.
,
Lackland
,
D.
,
Lichtman
,
J. H.
,
Lisabeth
,
L.
,
Liu
,
S.
,
Longenecker
,
C. T.
,
Lutsey
,
P. L.
,
Mackey
,
J. S.
,
Matchar
,
D. B.
,
Matsushita
,
K.
,
Mussolino
,
M. E.
,
Nasir
,
K.
,
O'Flaherty
,
M.
,
Palaniappan
,
L. P.
,
Pandey
,
A.
,
Pandey
,
D. K.
,
Reeves
,
M. J.
,
Ritchey
,
M. D.
,
Rodriguez
,
C. J.
,
Roth
,
G. A.
,
Rosamond
,
W. D.
,
Sampson
,
U. K. A.
,
Satou
,
G. M.
,
Shah
,
S. H.
,
Spartano
,
N. L.
,
Tirschwell
,
D. L.
,
Tsao
,
C. W.
,
Voeks
,
J. H.
,
Willey
,
J. Z.
,
Wilkins
,
J. T.
,
Wu
,
J. H. Y..
,
Alger
,
H. M.
, and
Wong
,
S. S.
,
Paul Muntner, and On Behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee
2018
, “
Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association
,”
Circulation
,
137
(
12
), pp.
e67
e492
.10.1161/CIR.0000000000000558
2.
Clarke
,
S. A.
,
Ghanta
,
R. K.
,
Ailawadi
,
G.
, and
Holmes
,
J. W.
,
2014
, “
Cardiac Restraint and Support Following Myocardial Infarction
,”
Cardiovascular and Cardiac Therapeutic Devices
,
T.
Franz
, ed.,
Springer
,
Berlin
, pp.
169
206
.
3.
Gorman
,
R. C.
,
Jackson
,
B. M.
,
Burdick
,
J. A.
, and
Gorman
,
J. H.
,
2011
, “
Infarct Restraint to Limit Adverse Ventricular Remodeling
,”
J. Cardiovasc. Transl. Res.
,
4
(
1
), pp.
73
81
.10.1007/s12265-010-9244-0
4.
Rane
,
A. A.
, and
Christman
,
K. L.
,
2011
, “
Biomaterials for the Treatment of Myocardial Infarction
,”
J. Am. Coll. Cardiol.
,
58
(
25
), pp.
2615
2619
.10.1016/j.jacc.2011.11.001
5.
Hirt
,
M. N.
,
Hansen
,
A.
, and
Eschenhagen
,
T.
,
2014
, “
Cardiac Tissue Engineering
,”
Circ. Res.
,
114
(
2
), pp.
354
367
.10.1161/CIRCRESAHA.114.300522
6.
Fomovsky
,
G. M.
,
Clark
,
S. A.
,
Parker
,
K. M.
,
Ailawadi
,
G.
, and
Holmes
,
J. W.
,
2012
, “
Anisotropic Reinforcement of Acute Anteroapical Infarcts Improves Pump Function
,”
Circ.: Heart Failure
,
5
(
4
), pp.
515
522
.10.1161/CIRCHEARTFAILURE.111.965731
7.
Fomovsky
,
G. M.
,
Macadangdang
,
J. R.
,
Ailawadi
,
G.
, and
Holmes
,
J. W.
,
2011
, “
Model-Based Design of Mechanical Therapies for Myocardial Infarction
,”
J. Cardiovasc. Transl. Res.
,
4
(
1
), pp.
82
91
.10.1007/s12265-010-9241-3
8.
Bogen
,
D. K.
,
Rabinowitz
,
S. A.
,
Needleman
,
A.
,
McMahon
,
T. A.
, and
Abelmann
,
W. H.
,
1980
, “
An Analysis of the Mechanical Disadvantage of Myocardial Infarction in the Canine Left Ventricle
,”
Circ. Res.
,
47
(
5
), pp.
728
741
.10.1161/01.RES.47.5.728
9.
Wall
,
S. T.
,
Walker
,
J. C.
,
Healy
,
K. E.
,
Ratcliffe
,
M. B.
, and
Guccione
,
J. M.
,
2006
, “
Theoretical Impact of the Injection of Material Into the Myocardium: A Finite Element Model Simulation
,”
Circulation
,
114
(
24
), pp.
2627
2635
.10.1161/CIRCULATIONAHA.106.657270
10.
Clarke
,
S. A.
,
Goodman
,
N. C.
,
Ailawadi
,
G.
, and
Holmes
,
J. W.
,
2015
, “
Effect of Scar Compaction on the Therapeutic Efficacy of Anisotropic Reinforcement Following Myocardial Infarction in the Dog
,”
J. Cardiovasc. Transl. Res.
,
8
(
6
), pp.
353
361
.10.1007/s12265-015-9637-1
11.
Herz
,
S. L.
,
Ingrassia
,
C. M.
,
Homma
,
S.
,
Costa
,
K. D.
, and
Holmes
,
J. W.
,
2005
, “
Parameterization of Left Ventricular Wall Motion for Detection of Regional Ischemia
,”
Ann. Biomed. Eng.
,
33
(
7
), pp.
912
919
.10.1007/s10439-005-3312-7
12.
Streeter
,
D. D.
, and
Hanna
,
W. T.
,
1973
, “
Engineering Mechanics for Successive States in Canine Left Ventricular Myocardium—II: Fiber Angle and Sarcomere Length
,”
Circ. Res.
,
33
(
6
), pp.
656
664
.10.1161/01.RES.33.6.656
13.
Holmes
,
J. W.
,
Borg
,
T. K.
, and
Covell
,
J. W.
,
2005
, “
Structure and Mechanics of Healing Myocardial Infarcts
,”
Annu. Rev. Biomed. Eng.
,
7
(
1
), pp.
223
253
.10.1146/annurev.bioeng.7.060804.100453
14.
May-Newman
,
K.
,
Omens
,
J. H.
,
Pavelec
,
R. S.
, and
McCulloch
,
A. D.
,
1994
, “
Three-Dimensional Transmural Mechanical Interaction Between the Coronary Vasculature and Passive Myocardium in the Dog
,”
Circ. Res.
,
74
(
6
), pp.
1166
1178
.10.1161/01.RES.74.6.1166
15.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C. P.
,
1990
, “
Determination of a Constitutive Relation for Passive Myocardium—I: A New Functional Form
,”
ASME J. Biomech. Eng.
,
112
(
3
), pp.
333
339
.10.1115/1.2891193
16.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2009
, “
Constitutive Modelling of Passive Myocardium: A Structurally Based Framework for Material Characterization
,”
Philos. Trans. R. Soc. A
,
367
(
1902
), pp.
3445
3475
.10.1098/rsta.2009.0091
17.
Guccione
,
J. M.
,
Waldman
,
L. K.
, and
McCulloch
,
A. D.
,
1993
, “
Mechanics of Active Contraction in Cardiac Muscle—Part II: Cylindrical Models of the Systolic Left Ventricle
,”
ASME J. Biomech. Eng.
,
115
(
1
), pp.
82
90
.10.1115/1.2895474
18.
Hunter
,
P. J.
,
McCulloch
,
A. D.
, and
ter Keurs
,
H. E. D. J.
,
1998
, “
Modelling the Mechanical Properties of Cardiac Muscle
,”
Prog. Biophys. Mol. Biol.
,
69
(
2–3
), pp.
289
331
.10.1016/S0079-6107(98)00013-3
19.
Ross
,
J.
,
1991
, “
Myocardial Perfusion-Contraction Matching. Implications for Coronary Heart Disease and Hibernation
,”
Circulation
,
83
(
3
), pp.
1076
1083
.10.1161/01.CIR.83.3.1076
20.
Lamas
,
G. A.
,
Vaughan
,
D. E.
,
Parisi
,
A. F.
, and
Pfeffer
,
M. A.
,
1989
, “
Effects of Left Ventricular Shape and Captopril Therapy on Exercise Capacity After Anterior Wall Acute Myocardial Infarction
,”
Am. J. Cardiol.
,
63
(
17
), pp.
1167
1173
.10.1016/0002-9149(89)90173-2
21.
Mitchell
,
G. F.
,
Lamas
,
G. A.
,
Vaughan
,
D. E.
, and
Pfeffer
,
M. A.
,
1992
, “
Left Ventricular Remodeling in the Year After First Anterior Myocardial Infarction: A Quantitative Analysis of Contractile Segment Lengths and Ventricular Shape
,”
J. Am. Coll. Cardiol.
,
19
(
6
), pp.
1136
1144
.10.1016/0735-1097(92)90314-D
22.
Wong
,
S. P.
,
French
,
J. K.
,
Lydon
,
A. M.
,
Manda
,
S. O. M.
,
Gao
,
W.
,
Ashton
,
N. G.
, and
White
,
H. D.
,
2004
, “
Relation of Left Ventricular Sphericity to 10-Year Survival After Acute Myocardial Infarction
,”
Am. J. Cardiol.
,
94
(
10
), pp.
1270
1275
.10.1016/j.amjcard.2004.07.110
23.
Pfeffer
,
M. A.
, and
Braunwald
,
E.
,
1990
, “
Ventricular Remodeling After Myocardial Infarction Experimental Observations and Clinical Implications
,”
Circulation
,
81
(
4
), pp.
1161
1172
.10.1161/01.CIR.81.4.1161
24.
Sun
,
K.
,
Stander
,
N.
,
Jhun
,
C.
,
Zhang
,
Z.
,
Suzuki
,
T.
,
Wang
,
G.
,
Saeed
,
M.
,
Wallace
,
A. W.
,
Tseng
,
E. E.
,
Baker
,
A. J.
,
Saloner
,
D.
,
Einstein
,
D. R.
,
Ratcliffe
,
M. B.
, and
Guccione
,
J. M.
,
2009
, “
A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm
,”
ASME J. Biomech. Eng.
,
131
(
11
), p.
111001
.10.1115/1.3148464
25.
Wenk
,
J. F.
,
Sun
,
K.
,
Zhang
,
Z.
,
Soleimani
,
M.
,
Ge
,
L.
,
Saloner
,
D.
,
Wallace
,
A. W.
,
Ratcliffe
,
M. B.
, and
Guccione
,
J. M.
,
2011
, “
Regional Left Ventricular Myocardial Contractility and Stress in a Finite Element Model of Posterobasal Myocardial Infarction
,”
ASME J. Biomech. Eng.
,
133
(
4
), p.
044501
.10.1115/1.4003438
26.
Ifkovits
,
J. L.
,
Tous
,
E.
,
Minakawa
,
M.
,
Morita
,
M.
,
Robb
,
J. D.
,
Koomalsingh
,
K. J.
,
Gorman
,
J. H.
,
Gorman
,
R. C.
, and
Burdick
,
J. A.
,
2010
, “
Injectable Hydrogel Properties Influence Infarct Expansion and Extent of Postinfarction Left Ventricular Remodeling in an Ovine Model
,”
Proc. Natl. Acad. Sci.
,
107
(
25
), pp.
11507
11512
.10.1073/pnas.1004097107
27.
Mukherjee
,
R.
,
Zavadzkas
,
J. A.
,
Saunders
,
S. M.
,
McLean
,
J. E.
,
Jeffords
,
L. B.
,
Beck
,
C.
,
Stroud
,
R. E.
,
Leone
,
A. M.
,
Koval
,
C. N.
,
Rivers
,
W. T.
,
Basu
,
S.
,
Sheehy
,
A.
,
Michal
,
G.
, and
Spinale
,
F. G.
,
2008
, “
Targeted Myocardial Microinjections of a Biocomposite Material Reduces Infarct Expansion in Pigs
,”
Ann. Thorac. Surg.
,
86
(
4
), pp.
1268
1276
.10.1016/j.athoracsur.2008.04.107
28.
Fujimoto
,
K. L.
,
Ma
,
Z.
,
Nelson
,
D. M.
,
Hashizume
,
R.
,
Guan
,
J.
,
Tobita
,
K.
, and
Wagner
,
W. R.
,
2009
, “
Synthesis, Characterization and Therapeutic Efficacy of a Biodegradable, Thermoresponsive Hydrogel Designed for Application in Chronic Infarcted Myocardium
,”
Biomaterials
,
30
(
26
), pp.
4357
4368
.10.1016/j.biomaterials.2009.04.055
29.
Leor
,
J.
,
Tuvia
,
S.
,
Guetta
,
V.
,
Manczur
,
F.
,
Castel
,
D.
,
Willenz
,
U.
,
Petneházy
,
Ö.
,
Landa
,
N.
,
Feinberg
,
M. S.
,
Konen
,
E.
,
Goitein
,
O.
,
Tsur-Gang
,
O.
,
Shaul
,
M.
,
Klapper
,
L.
, and
Cohen
,
S.
,
2009
, “
Intracoronary Injection of In Situ Forming Alginate Hydrogel Reverses Left Ventricular Remodeling After Myocardial Infarction in Swine
,”
J. Am. Coll. Cardiol.
,
54
(
11
), pp.
1014
1023
.10.1016/j.jacc.2009.06.010
30.
Garcia
,
J. R.
,
Campbell
,
P. F.
,
Kumar
,
G.
,
Langberg
,
J. J.
,
Cesar
,
L.
,
Wang
,
L.
,
García
,
A. J.
, and
Levit
,
R. D.
,
2017
, “
A Minimally Invasive, Translational Method to Deliver Hydrogels to the Heart Through the Pericardial Space
,”
JACC: Basic Transl. Sci.
,
2
(
5
), pp.
601
609
.10.1016/j.jacbts.2017.06.003
31.
Whyte
,
W.
,
Roche
,
E. T.
,
Varela
,
C. E.
,
Mendez
,
K.
,
Islam
,
S.
,
O'Neill
,
H.
,
Weafer
,
F.
,
Shirazi
,
R. N.
,
Weaver
,
J. C.
,
Vasilyev
,
N. V.
,
McHugh
,
P. E.
,
Murphy
,
B.
,
Duffy
,
G. P.
,
Walsh
,
C. J.
, and
Mooney
,
D. J.
,
2018
, “
Sustained Release of Targeted Cardiac Therapy With a Replenishable Implanted Epicardial Reservoir
,”
Nat. Biomed. Eng.
,
2
(
6
), pp.
416
428
.10.1038/s41551-018-0247-5
32.
Kerckhoffs
,
R. C. P.
,
Neal
,
M. L.
,
Gu
,
Q.
,
Bassingthwaighte
,
J. B.
,
Omens
,
J. H.
, and
McCulloch
,
A. D.
,
2007
, “
Coupling of a 3D Finite Element Model of Cardiac Ventricular Mechanics to Lumped Systems Models of the Systemic and Pulmonic Circulation
,”
Ann. Biomed. Eng.
,
35
(
1
), pp.
1
18
.10.1007/s10439-006-9212-7
You do not currently have access to this content.