Abstract

Despite the large number of studies of intraventricular filling dynamics for potential clinical applications, little is known as to how the diastolic vortex ring properties are altered with reduction in internal volume of the cardiac left ventricle (LV). The latter is of particular importance in LV diastolic dysfunction (LVDD) and in congenital diseases such as hypertrophic cardiomyopathy (HCM), where LV hypertrophy (LVH) can reduce LV internal volume. We hypothesized that peak circulation and the rate of decay of circulation of the diastolic vortex would be altered with reducing end diastolic volume (EDV) due to increasing confinement. We tested this hypothesis on physical models of normal LV and HCM geometries, under identical prescribed inflow profiles and for multiple EDVs, using time-resolved particle image velocimetry (TR-PIV) measurements on a left heart simulator. Formation and pinch-off of the vortex ring were nearly unaffected with changes to geometry and EDV. Pinch-off occurred before the end of early filling (E-wave) in all test conditions. Peak circulation of the vortex core near the LV outflow tract (LVOT) increased with lowering EDV and was lowest for the HCM model. The rate of decay of normalized circulation in dimensionless formation time (T*) increased with decreasing EDV. When using a modified version of T* that included average LV cross-sectional area and EDV, normalized circulation of all tested EDVs collapsed closely in the normal LV model (10% maximum difference between EDVs). Collectively, our results show that LV shape and internal volume play a critical role in diastolic vortex ring dynamics.

References

1.
Rodevand
,
O.
,
Bjornerheim
,
R.
,
Edvardsen
,
T.
,
Smiseth
,
O. A.
, and
Ihlen
,
H.
,
1999
, “
Diastolic Flow Pattern in the Normal Left Ventricle
,”
J. Am. Soc. Echocardiography
,
12
(
6
), pp.
500
507
.10.1016/S0894-7317(99)70087-8
2.
Gharib
,
M.
,
Rambod
,
E.
,
Kheradvar
,
A.
,
Sahn
,
D. J.
, and
Dabiri
,
J. O.
,
2006
, “
Optimal Vortex Formation as an Index of Cardiac Health
,”
Proc. Natl. Acad. Sci.
,
103
(
16
), pp.
6305
6308
.10.1073/pnas.0600520103
3.
Pierrakos
,
O.
, and
Vlachos
,
P. P.
,
2006
, “
The Effect of Vortex Formation on Left Ventricular Filling and Mitral Valve Efficiency
,”
ASME J. Biomech. Eng.
,
128
(
4
), pp.
527
539
.10.1115/1.2205863
4.
Eriksson
,
J.
,
Dyverfeldt
,
P.
,
Engvall
,
J.
,
Bolger
,
A. F.
,
Ebbers
,
T.
, and
Carlhäll
,
C. J.
,
2011
, “
Quantification of Presystolic Blood Flow Organization and Energetics in the Human Left Ventricle
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
300
(
6
), pp.
H2135
H2141
.10.1152/ajpheart.00993.2010
5.
Kheradvar
,
A.
,
Assadi
,
R.
,
Falahatpisheh
,
A.
, and
Sengupta
,
P. P.
,
2012
, “
Assessment of Transmitral Vortex Formation in Patients With Diastolic Dysfunction
,”
J. Am. Soc. Echocardiography
,
25
(
2
), pp.
220
227
.10.1016/j.echo.2011.10.003
6.
Töger
,
J.
,
Kanski
,
M.
,
Carlsson
,
M.
,
Kovács
,
S. J.
,
Söderlind
,
G.
,
Arheden
,
H.
, and
Heiberg
,
E.
,
2012
, “
Vortex Ring Formation in the Left Ventricle of the Heart: Analysis by 4D Flow MRI and Lagrangian Coherent Structures
,”
Ann. Biomed. Eng.
,
40
(
12
), pp.
2652
2662
.10.1007/s10439-012-0615-3
7.
Charonko
,
J. J.
,
Kumar
,
R.
,
Stewart
,
K.
,
Little
,
W. C.
, and
Vlachos
,
P. P.
,
2013
, “
Vortices Formed on the Mitral Valve Tips Aid Normal Left Ventricular Filling
,”
Ann. Biomed. Eng.
,
41
(
5
), pp.
1049
1061
.10.1007/s10439-013-0755-0
8.
Prinz
,
C.
,
Lehmann
,
R.
,
Brandao da Silva
,
D.
,
Jurczak
,
B.
,
Bitter
,
T.
,
Faber
,
L.
, and
Horstkotte
,
D.
,
2013
, “
Echocardiographic Particle Image Velocimetry for the Evaluation of Diastolic Function in Hypertrophic Nonobstructive Cardiomyopathy
,”
Echocardiography
,
31
(
7
), p.
894
.10.1111/echo.12487
9.
Bermejo
,
J.
,
Benito
,
Y.
,
Alhama
,
M.
,
Yotti
,
R.
,
Martínez-Legazpi
,
P.
,
del Villar
,
C. P.
,
Pérez-David
,
E.
,
González-Mansilla
,
A.
,
Santa-Marta
,
C.
,
Barrio
,
A.
,
Fernández-Avilés
,
F.
, and
Del Álamo
,
J. C.
,
2014
, “
Intraventricular Vortex Properties in Nonischemic Dilated Cardiomyopathy
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
306
(
5
), pp.
H718
H729
.10.1152/ajpheart.00697.2013
10.
Elbaz
,
M. S.
,
Calkoen
,
E. E.
,
Westenberg
,
J. J.
,
Lelieveldt
,
B. P.
,
Roest
,
A. A.
, and
van der Geest
,
R. J.
,
2014
, “
Vortex Flow During Early and Late Left Ventricular Filling in Normal Subjects: Quantitative Characterization Using Retrospectively-Gated 4D Flow Cardiovascular Magnetic Resonance and Three-Dimensional Vortex Core Analysis
,”
J. Cardiovasc. Magn. Resonance
,
16
(
1
), p.
1
.10.1186/s12968-014-0078-9
11.
Seo
,
J.-H.
,
Vedula
,
V.
,
Abraham
,
T.
,
Lardo
,
A. C.
,
Dawoud
,
F.
,
Luo
,
H.
, and
Mittal
,
R.
,
2014
, “
Effect of the Mitral Valve on Diastolic Flow Patterns
,”
Phys. Fluids
,
26
(
12
), p.
121901
.10.1063/1.4904094
12.
Calkoen
,
E. E.
,
Elbaz
,
M. S.
,
Westenberg
,
J. J.
,
Kroft
,
L. J.
,
Hazekamp
,
M. G.
,
Roest
,
A. A.
, and
van der Geest
,
R. J.
,
2015
, “
Altered Left Ventricular Vortex Ring Formation by 4-Dimensional Flow Magnetic Resonance Imaging After Repair of Atrioventricular Septal Defects
,”
J. Thorac. Cardiovasc. Surg.
,
150
(
5
), pp.
1233
1240
.10.1016/j.jtcvs.2015.07.048
13.
Rossini
,
L.
,
Martinez-Legazpi
,
P.
,
Benito
,
Y.
,
Pérez del Villar
,
C.
,
Gonzalez-Mansilla
,
A.
,
Barrio
,
A.
,
Borja
,
M.-G.
,
Yotti
,
R.
,
Kahn
,
A. M.
,
Shadden
,
S. C.
,
Fernández-Avilés
,
F.
,
Bermejo
,
J.
, and
del Álamo
,
J. C.
,
2017
, “
Clinical Assessment of Intraventricular Blood Transport in Patients Undergoing Cardiac Resynchronization Therapy
,”
Meccanica
,
52
(
3
), pp.
563
576
.10.1007/s11012-015-0322-x
14.
Elbaz
,
M. S.
,
van der Geest
,
R. J.
,
Calkoen
,
E. E.
,
de Roos
,
A.
,
Lelieveldt
,
B. P.
,
Roest
,
A. A.
, and
Westenberg
,
J. J.
,
2017
, “
Assessment of Viscous Energy Loss and the Association With Three‐Dimensional Vortex Ring Formation in Left Ventricular Inflow: In Vivo Evaluation Using Four‐Dimensional Flow MRI
,”
Magn. Resonance Med.
,
77
(
2
), pp.
794
805
.10.1002/mrm.26129
15.
Arvidsson
,
P. M.
,
Kovács
,
S. J.
,
Töger
,
J.
,
Borgquist
,
R.
,
Heiberg
,
E.
,
Carlsson
,
M.
, and
Arheden
,
H.
,
2016
, “
Vortex Ring Behavior Provides the Epigenetic Blueprint for the Human Heart
,”
Sci. Rep.
,
6
(
1
), p.
22021
.10.1038/srep22021
16.
Vedula
,
V.
,
Seo
,
J. H.
,
Lardo
,
A. C.
, and
Mittal
,
R.
,
2016
, “
Effect of Trabeculae and Papillary Muscles on the Hemodynamics of the Left Ventricle
,”
Theor. Comput. Fluid Dyn.
,
30
(
1–2
), pp.
3
21
.10.1007/s00162-015-0349-6
17.
Hong
,
G.-R.
,
Pedrizzetti
,
G.
,
Tonti
,
G.
,
Li
,
P.
,
Wei
,
Z.
,
Kim
,
J. K.
,
Baweja
,
A.
,
Liu
,
S.
,
Chung
,
N.
,
Houle
,
H.
,
Narula
,
J.
, and
Vannan
,
M. A.
,
2008
, “
Characterization and Quantification of Vortex Flow in the Human Left Ventricle by Contrast Echocardiography Using Vector Particle Image Velocimetry
,”
JACC: Cardiovasc. Imaging
,
1
(
6
), pp.
705
717
.10.1016/j.jcmg.2008.06.008
18.
Zile
,
M. R.
, and
Brutsaert
,
D. L.
,
2002
, “
New Concepts in Diastolic Dysfunction and Diastolic Heart Failure—Part I: Diagnosis, Prognosis, and Measurements of Diastolic Function
,”
Circulation
,
105
(
11
), pp.
1387
1393
.10.1161/hc1102.105289
19.
Zile
,
M. R.
, and
Brutsaert
,
D. L.
,
2002
, “
New Concepts in Diastolic Dysfunction and Diastolic Heart Failure—Part II
,”
Circulation
,
105
(
12
), pp.
1503
1508
.10.1161/hc1202.105290
20.
Wood
,
P.
,
Piran
,
S.
, and
Liu
,
P. P.
,
2011
, “
Diastolic Heart Failure: Progress, Treatment Challenges, and Prevention
,”
Can. J. Cardiol.
,
27
(
3
), pp.
302
310
.10.1016/j.cjca.2011.02.008
21.
Gaasch
,
W. H.
, and
Zile
,
M. R.
,
2004
, “
Left Ventricular Diastolic Dysfunction and Diastolic Heart Failure
,”
Annu. Rev. Med.
,
55
(
1
), pp.
373
394
.10.1146/annurev.med.55.091902.104417
22.
Maron
,
B. J.
,
Ommen
,
S. R.
,
Semsarian
,
C.
,
Spirito
,
P.
,
Olivotto
,
I.
, and
Maron
,
M. S.
,
2014
, “
Hypertrophic Cardiomyopathy: Present and Future, With Translation Into Contemporary Cardiovascular Medicine
,”
J. Am. Coll. Cardiol.
,
64
(
1
), pp.
83
99
.10.1016/j.jacc.2014.05.003
23.
Poh
,
K. K.
,
Lee
,
L. C.
,
Shen
,
L.
,
Chong
,
E.
,
Tan
,
Y. L.
,
Chai
,
P.
,
Yeo
,
T. C.
, and
Wood
,
M. J.
,
2011
, “
Left Ventricular Fluid Dynamics in Heart Failure: Echocardiographic Measurement and Utilities of Vortex Formation Time
,”
Eur. Heart J.-Cardiovasc. Imaging
,
13
(
5
), pp.
385
393
.https://doi.org/10.1093/ejechocard/jer288
24.
Ghosh
,
E.
,
Shmuylovich
,
L.
, and
Kovács
,
S. J.
,
2010
, “
Vortex Formation Time-to-Left Ventricular Early Rapid Filling Relation: Model-Based Prediction With Echocardiographic Validation
,”
J. Appl. Physiol.
,
109
(
6
), pp.
1812
1819
.10.1152/japplphysiol.00645.2010
25.
Maragiannis
,
D.
,
Alvarez
,
P. A.
,
Schutt
,
R. C.
,
Chin
,
K.
,
Buergler
,
J. M.
,
Little
,
S. H.
,
Shah
,
D. J.
, and
Nagueh
,
S. F.
,
2016
, “
Vortex Formation Time Index in Patients With Hypertrophic Cardiomyopathy
,”
JACC: Cardiovasc. Imaging
,
9
(
10
), pp.
1229
1231
.10.1016/j.jcmg.2015.10.009
26.
Gharib
,
M.
,
Rambod
,
E.
, and
Shariff
,
K.
,
1998
, “
A Universal Time Scale for Vortex Ring Formation
,”
J. Fluid Mech.
,
360
, pp.
121
140
.10.1017/S0022112097008410
27.
Stewart
,
K. C.
,
Charonko
,
J. C.
,
Niebel
,
C. L.
,
Little
,
W. C.
, and
Vlachos
,
P. P.
,
2012
, “
Left Ventricular Vortex Formation is Unaffected by Diastolic Impairment
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
303
(
10
), pp.
H1255
H1262
.10.1152/ajpheart.00093.2012
28.
Pasipoularides
,
A.
,
Vlachos
,
P. P.
, and
Little
,
W. C.
,
2015
, “
Vortex Formation Time is Not an Index of Ventricular Function
,”
J. Cardiovasc. Transl. Res.
,
8
(
1
), pp.
54
58
.10.1007/s12265-015-9607-7
29.
Stewart
,
K. C.
,
Niebel
,
C. L.
,
Jung
,
S.
, and
Vlachos
,
P. P.
,
2012
, “
The Decay of Confined Vortex Rings
,”
Exp. Fluids
,
53
(
1
), pp.
163
171
.10.1007/s00348-012-1277-5
30.
Okafor
,
I. U.
,
Santhanakrishnan
,
A.
,
Chaffins
,
B. D.
,
Mirabella
,
L.
,
Oshinski
,
J. N.
, and
Yoganathan
,
A. P.
,
2015
, “
Cardiovascular Magnetic Resonance Compatible Physical Model of the Left Ventricle for Multi-Modality Characterization of Wall Motion and Hemodynamics
,”
J. Cardiovasc. Magn. Reson.
,
17
(
1
), p.
51
.10.1186/s12968-015-0154-9
31.
Okafor
,
I. U.
,
Santhanakrishnan
,
A.
,
Raghav
,
V. S.
, and
Yoganathan
,
A. P.
,
2015
, “
Role of Mitral Annulus Diastolic Geometry on Intraventricular Filling Dynamics
,”
ASME J. Biomech. Eng.
,
137
(
12
), p.
121007
.10.1115/1.4031838
32.
Santhanakrishnan
,
A.
,
Okafor
,
I.
,
Kumar
,
G.
, and
Yoganathan
,
A. P.
,
2016
, “
Atrial Systole Enhances Intraventricular Filling Flow Propagation During Increasing Heart Rate
,”
J. Biomech.
,
49
(
4
), pp.
618
623
.10.1016/j.jbiomech.2016.01.026
33.
Sasson
,
Z.
,
Rakowski
,
H.
, and
Wigle
,
E. D.
,
1988
, “
Hypertrophic Cardiomyopathy
,”
Cardiol. Clin.
,
6
(
2
), pp.
233
288
.10.1016/S0733-8651(18)30494-6
34.
Lefebvre
,
X. P.
,
He
,
S.
,
Levine
,
R. A.
, and
Yoganathan
,
A. P.
,
1995
, “
Systolic Anterior Motion of the Mitral Valve in Hypertrophic Cardiomyopathy: An in Vitro Pulsatile Flow Study
,”
J. Heart Valve Dis.
,
4
(
4
), p.
422
.https://pubmed.ncbi.nlm.nih.gov/7582155/
35.
Motoyasu
,
M.
,
Kurita
,
T.
,
Onishi
,
K.
,
Uemura
,
S.
,
Tanigawa
,
T.
,
Okinaka
,
T.
,
Takeda
,
K.
,
Nakano
,
T.
,
Ito
,
M.
, and
Sakuma
,
H.
,
2008
, “
Correlation Between Late Gadolinium Enhancement and Diastolic Function in Hypertrophic Cardiomyopathy Assessed by Magnetic Resonance Imaging
,”
Circ. J.
,
72
(
3
), pp.
378
383
.10.1253/circj.72.378
36.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
,
1999
, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
,
387
, pp.
353
396
.10.1017/S002211209900467X
37.
Leong
,
D. P.
,
De Pasquale
,
C. G.
, and
Selvanayagam
,
J. B.
,
2010
, “
Heart Failure With Normal Ejection Fraction: The Complementary Roles of Echocardiography and CMR Imaging
,”
JACC: Cardiovasc. Imaging
,
3
(
4
), pp.
409
420
.10.1016/j.jcmg.2009.12.011
38.
Iliceto
,
S.
,
D'Ambrosio
,
G.
,
Marangelli
,
V.
,
Amico
,
A.
,
Di Biase
,
M.
, and
Rizzon
,
P.
,
1991
, “
Echo-Doppler Evaluation of the Effects of Heart Rate Increments on Left Atrial Pump Function in Normal Human Subjects
,”
Eur. Heart J.
,
12
(
3
), pp.
345
51
.10.1093/oxfordjournals.eurheartj.a059900
39.
Morton
,
B. R.
,
1984
, “
The Generation and Decay of Vorticity
,”
Geophys. Astrophys. Fluid Dyn.
,
28
(
3–4
), pp.
277
308
.10.1080/03091928408230368
40.
Stewart
,
K. C.
, and
Vlachos
,
P. P.
,
2012
, “
Vortex Rings in Radially Confined Domains
,”
Exp. Fluids
,
53
(
4
), pp.
1033
1044
.10.1007/s00348-012-1343-z
You do not currently have access to this content.