The arterial input function (AIF)—time-density curve (TDC) of contrast at the coronary ostia—plays a central role in contrast enhanced computed tomography angiography (CTA). This study employs computational modeling in a patient-specific aorta to investigate mixing and dispersion of contrast in the aortic arch (AA) and to compare the TDCs in the coronary ostium and the descending aorta. Here, we examine the validity of the use of TDC in the descending aorta as a surrogate for the AIF. Computational fluid dynamics (CFD) was used to study hemodynamics and contrast dispersion in a CTA-based patient model of the aorta. Variations in TDC between the aortic root, through the AA and at the descending aorta and the effect of flow patterns on contrast dispersion was studied via postprocessing of the results. Simulations showed complex unsteady patterns of contrast mixing and dispersion in the AA that are driven by the pulsatile flow. However, despite the relatively long intra-aortic distance between the coronary ostia and the descending aorta, the TDCs at these two locations were similar in terms of rise-time and up-slope, and the time lag between the two TDCs was 0.19 s. TDC in the descending aorta is an accurate analog of the AIF. Methods that use quantitative metrics such as rise-time and slope of the AIF to estimate coronary flowrate and myocardial ischemia can continue with the current practice of using the TDC at the descending aorta as a surrogate for the AIF.

References

1.
Maurovich-Horvat
,
P.
,
Ferencik
,
M.
,
Voros
,
S.
,
Merkely
,
B.
, and
Hoffmann
,
U.
,
2014
, “
Comprehensive Plaque Assessment by Coronary CT Angiography
,”
Nat. Rev. Cardiol.
,
11
(
7
), pp.
390
402
.
2.
Abbara
,
S.
,
Arbab-Zadeh
,
A.
,
Callister
,
T. Q.
,
Desai
,
M. Y.
,
Mamuya
,
W.
,
Thomson
,
L.
, and
Weigold
,
W. G.
,
2009
, “
SCCT Guidelines for Performance of Coronary Computed Tomographic Angiography: A Report of the Society of Cardiovascular Computed Tomography Guidelines Committee
,”
J. Cardiovasc. Comput. Tomogr.
,
3
(
3
), pp.
190
204
.
3.
Meijboom
,
W. B.
,
Meijs
,
M. F. L.
,
Schuijf
,
J. D.
,
Cramer
,
M. J.
,
Mollet
,
N. R.
,
van Mieghem
,
C. A. G.
,
Nieman
,
K.
,
van Werkhoven
,
J. M.
,
Pundziute
,
G.
,
Weustink
,
A. C.
,
de Vos
,
A. M.
,
Pugliese
,
F.
,
Rensing
,
B.
,
Jukema
,
J. W.
,
Bax
,
J. J.
,
Prokop
,
M.
,
Doevendans
,
P. A.
,
Hunink
,
M. G. M.
,
Krestin
,
G. P.
, and
de Feyter
,
P. J.
,
2008
, “
Diagnostic Accuracy of 64-Slice Computed Tomography Coronary Angiography. A Prospective, Multicenter, Multivendor Study
,”
J. Am. Coll. Cardiol
,
52
(
25
), pp.
2135
2144
.
4.
Miller
,
J. M.
,
Rochitte
,
C. E.
,
Dewey
,
M.
,
Arbab-Zadeh
,
A.
,
Niinuma
,
H.
,
Gottlieb
,
I.
,
Paul
,
N.
,
Clouse
,
M. E.
,
Shapiro
,
E. P.
,
Hoe
,
J.
,
Lardo
,
A. C.
,
Bush
,
D. E.
,
de Roos
,
A.
,
Cox
,
C.
,
Brinker
,
J.
, and
Lima
,
J. A. C.
,
2008
, “
Diagnostic Performance of Coronary Angiography by 64-Row CT
,”
N. Engl. J. Med.
,
359
(
22
), pp.
2324
2336
.
5.
George
,
A. C. A.
,
Ichihara
,
R. T.
,
Lima
,
T.
, and
Lardo
,
J. A. C.
,
2010
, “
A Method for Reconstructing the Arterial Input Function During Helical CT: Implications for Myocardial Perfusion Distribution Imaging
,”
Radiology
,
255
(
2
), pp.
396
404
.
6.
Lardo
,
A. C.
,
Rahsepar
,
A. A.
,
Seo
,
J. H.
,
Eslami
,
P.
,
Korley
,
F.
, and
George
,
R. T.
,
2015
, “
Computed Tomography Transluminal Attenuation Flow Encoding (TAFE): Formulation, Preclinical Validation and Clinical Feasibility
,”
JCCT
,
9
(
6
), pp.
559
566
.
7.
Eslami
,
P.
,
Seo
,
J.-H.
,
Rahsepar
,
A. A.
,
George
,
R.
,
Lardo
,
A. C.
, and
Mittal
,
R.
,
2015
, “
Computational Study of Computed Tomography Contrast Gradients in Models of Stenosed Coronary Arteries
,”
ASME J. Biomech. Eng.
,
137
(
9
), p.
091002
.
8.
Markl
,
M.
,
Draney
,
M. T.
,
Miller
,
D. C.
,
Levin
,
J. M.
,
Williamson
,
E. E.
,
Pelc
,
N. J.
,
Liang
,
D. H.
, and
Herfkens
,
R. J.
,
2005
, “
Time-Resolved Three-Dimensional Magnetic Resonance Velocity Mapping of Aortic Flow in Healthy Volunteers and Patients After Valve-Sparing Aortic Root Replacement
,”
J. Thorac. Cardiovasc. Surg.
,
130
(
2
), pp.
456
463
.
9.
Hope
,
M. D.
,
Wrenn
,
S. J.
, and
Dyverfeldt
,
P.
,
2013
, “
Clinical Applications of Aortic 4D Flow Imaging
,”
Curr. Cardiovasc. Imaging Rep.
,
6
(
2
), pp.
128
139
.
10.
Vasava
,
P.
,
Dabagh
,
M.
, and
Jalali
,
P.
,
2009
, “
Effect Aortic Arch Geometry Pulsatile Blood Flow: Flow Pattern Wall
,” IFMBE Proceedings World Congress on Medical Physics and Biomedical Engineering, Vol. 25/4,
Munich, Germany
, Sept. 7–12.
11.
Rangayyan
,
R.
,
2005
,
Biomedical Image Analysis
,
CRC Press-Taylor & Francis Group
,
Boca Raton, FL
.
12.
De Hart
,
J.
,
Baaijens
,
F. P. T.
,
Peters
,
G. W. M.
, and
Schreurs
,
P. J. G.
,
2003
, “
A Computational Fluid-Structure Interaction Analysis of a Fiber-Reinforced Stentless Aortic Valve
,”
J. Biomech.
,
36
(
5
), pp.
699
712
.
13.
De Hart
,
J.
,
Peters
,
G. W. M.
,
Schreurs
,
P. J. G.
, and
Baaijens
,
F. P. T.
,
2003
, “
A Three-Dimensional Computational Analysis of Fluid-Structure Interaction in the Aortic Valve
,”
J. Biomech.
,
36
(
1
), pp.
103
112
.
14.
Ranga
,
A.
,
Bouchot
,
O.
,
Mongrain
,
R.
,
Ugolini
,
P.
, and
Cartier
,
R.
,
2006
, “
Computational Simulations of the Aortic Valve Validated by Imaging Data: Evaluation of Valve-Sparing Techniques
,”
Interact. Cardiovasc. Thorac. Surg.
,
5
(
4
), pp.
373
378
.
15.
Makhijani
,
V.
,
Yang
,
H.
,
Dionne
,
P. J.
, and
Thubrikat
,
M. J.
,
1997
, “
Three Dimensional Coupled Fluid Structure Simulations of Parcardial Bioprosthetic Aortic Valve Function
,”
ASAIO
, (
43
), pp.
387
392
.
16.
Swanson
,
W. M.
, and
Clark
,
R. E.
,
1973
, “
Aortic Valve Leaflet Motion During Systole. Numerical-Graphical Determination
,”
Circ. Res.
,
32
(
1
), pp.
42
48
.
17.
Bellhouse
,
B. J.
, and
Talbot
,
L.
,
1969
, “
Fluid Mechanics of the Aortic Valve
,”
J. Fluid Mech.
,
35
(
4
), pp.
721
735
.
18.
Leyh
,
R. G.
,
Schmidtke
,
C.
,
Sievers
,
H. H.
, and
Yacoub
,
M. H.
,
1999
, “
Opening and Closing Characteristics of the Aortic Valve After Different Types of Valve-Preserving Surgery
,”
Circulation
,
100
(
21
), pp.
2153
2160
.
19.
El Faquir
,
N.
,
Rahhab
,
Z.
,
Schultz
,
J. C.
,
Maugenest
,
A-. M.
,
Aben
,
J-. P.
,
LB Slots
,
T.
,
van Domburg
,
R. T.
,
Mieghem
,
N. V.
, and
PT de Jaegere
,
P.
,
2016
, “
Definition of the Aortic Valve Plane by Means of a Novel Dedicated Software Program: Proof of Concept and Validation With Multi Slice Computed Tomography
,”
Int. J. Diagn. Imaging
,
3
(
1
), pp.
63
71
.
20.
Beg
,
M. F.
,
Miller
,
M. I.
,
Trouve
,
A.
, and
Younes
,
L.
,
2005
, “
Computing Large Deformation Metric Mappings Via Geodesic Flows of Diffeomorphisms
,”
Int. J. Comput. Vis.
,
61
(
2
), pp.
139
157
.
21.
Seo
,
J. H.
, and
Mittal
,
R.
,
2011
, “
A Sharp-Interface Immersed Boundary Method With Improved Mass Conservation and Reduced Spurious Pressure Oscillations
,”
J. Comput. Phys.
,
230
(
19
), pp.
7347
7363
.
22.
Mittal
,
R.
,
Dong
,
H.
,
Bozkurttas
,
M.
,
Najjar
,
F. M.
,
Vargas
,
A.
, and
von Loebbecke
,
A.
,
2008
, “
A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries
,”
J. Comput. Phys.
,
227
(
10
), pp.
4825
4852
.
23.
Seo
,
J. H.
,
Abd
,
T.
,
George
,
R. T.
, and
Mittal
,
R.
,
2016
, “
A Coupled Chemo-Fluidic Computational Model for Thrombogenesis in Infarcted Left Ventricles
,”
Am. J. Physiol. Heart Circ. Physiol.
,
310
(
11
), pp.
H1567
H1582
.
24.
Vedula
,
V.
,
George
,
R.
,
Younes
,
L.
, and
Mittal
,
R.
,
2015
, “
Hemodynamics in the Left Atrium and Its Effect on Ventricular Flow Patterns
,”
ASME J. Biomech. Eng.
,
137
(
11
), p.
111003
.
25.
Vedula
,
V.
,
Seo
,
J. H.
,
Lardo
,
A. C.
, and
Mittal
,
R.
,
2016
, “
Effect of Trabeculae and Papillary Muscles on the Hemodynamics of the Left Ventricle
,”
Theor. Comput. Fluid Dyn.
,
30
(
1–2
), pp.
3
21
.
26.
Zhu
,
C.
,
Seo
,
J.
,
Bakhshaee
,
H.
, and
Mittal
,
R.
,
2018
, “
A Computational Method for Analyzing the Biomechanics of Arterial Bruits
,”
ASME J. Biomech. Eng.
,
139
(
5
), p.
051008
.
27.
Kim
,
T.
,
Cheer
,
A. Y.
, and
Dwyer
,
H. A.
,
2004
, “
A Simulated Dye Method for Flow Visualization With a Computational Model for Blood Flow
,”
J. Biomech.
,
37
(
8
), pp.
1125
1136
.
28.
Shahcheraghi
,
N.
,
Dwyer
,
H. A.
,
Cheer
,
A. Y.
,
Barakat
,
A. I.
, and
Rutaganira
,
T.
,
2002
, “
Unsteady and Three-Dimensional Simulation of Blood Flow in the Human Aortic Arch
,”
ASME J. Biomech. Eng.
,
124
(
4
), pp.
378
387
.
29.
Clark
,
C.
, and
Schultz
,
D. L.
,
1973
, “
Velocity Distribution in Aortic Flow
,”
Cardiovasc. Res.
,
7
(
5
), pp.
601
613
.
30.
Gisvold
,
S. E.
, and
Brubakk
,
A. O.
,
1982
, “
Measurement of Instantaneous Blood-Flow Velocity in the Human Aorta Using Pulsed Doppler Ultrasound
,”
Cardiovasc. Res.
,
16
(
1
), pp.
26
33
.
31.
Ha
,
H.
,
Ziegler
,
M.
,
Welander
,
M.
, and
Bjarnegård
,
N.
,
2018
, “
Age-Related Vascular Changes Affect Turbulence in Aortic Blood Flow
,”
Front Physiol.
,
9
, p.
36
.
32.
Durant
,
J.
,
Waechter
,
I.
,
Hermans
,
R.
,
Weese
,
J.
, and
Aach
,
T.
,
2008
, “
Toward Quantitative Virtual Angiography: Evaluation With In Vitro Studies
,”
International Symposium on Biomedical Imaging
, Paris, France, May 14–17, pp.
632
635
.
33.
Numata
,
S.
,
Itatani
,
K.
,
Kanda
,
K.
,
Doi
,
K.
,
Yamazaki
,
S.
, and
Morimoto
,
K.
,
2016
, “
Blood Flow Analysis of the Aortic Arch Using Computational Fluid Dynamics
,”
Eur. J. Cardio-Thorac. Surg.
,
49
(
6
), p.
ezv459
.
34.
Poncelet
,
B. P.
,
Weisskoff
,
R. M.
,
Wedeen
,
V. J.
,
Brady
,
T. J.
, and
Kantor
,
H.
,
1993
, “
Time of Flight Quantification of Coronary Flow With Echo-Planar MRI
,”
Magn. Reson. Med.
,
30
(
4
), pp.
447
457
.
You do not currently have access to this content.