Pelvic fractures are serious injuries resulting in high mortality and morbidity. The objective of this study is to develop and validate local pelvic anatomical, cross section-based injury risk metrics for a finite element (FE) model of the human body. Cross-sectional instrumentation was implemented in the pelvic region of the Global Human Body Models Consortium (GHBMC M50-O) 50th percentile detailed male FE model (v4.3). In total, 25 lateral impact FE simulations were performed using input data from cadaveric lateral impact tests performed by Bouquet et al. The experimental force-time data were scaled using five normalization techniques, which were evaluated using log rank, Wilcoxon rank sum, and correlation and analysis (CORA) testing. Survival analyses with Weibull distribution were performed on the experimental peak force (scaled and unscaled) and the simulation test data to generate injury risk curves (IRCs) for total pelvic injury. Additionally, IRCs were developed for regional injury using cross-sectional forces from the simulation results and injuries documented in the experimental autopsies. These regional IRCs were also evaluated using the receiver operator characteristic (ROC) curve analysis. Based on the results of all the evaluation methods, the equal stress equal velocity (ESEV) and ESEV using effective mass (ESEV-EM) scaling techniques performed best. The simulation IRC shows slight under prediction of injury in comparison to these scaled experimental data curves. However, this difference was determined not to be statistically significant. Additionally, the ROC curve analysis showed moderate predictive power for all regional IRCs.

References

1.
Balogh
,
Z.
,
King
,
K. L.
,
Mackay
,
P.
,
McDougall
,
D.
,
Mackenzie
,
S.
,
Evans
,
J. A.
,
Lyons
,
T.
, and
Deane
,
S. A.
,
2007
, “
The Epidemiology of Pelvic Ring Fractures: A Population-Based Study
,”
J. Trauma Inj. Infect. Crit. Care
,
63
(
5
), pp.
1066
1073
.
2.
Inaba
,
K.
,
Sharkey
,
P. W.
,
Stephen
,
D. J. G.
,
Redelmeier
,
D. A.
, and
Brenneman
,
F. D.
,
2004
, “
The Increasing Incidence of Severe Pelvic Injury in Motor Vehicle Collisions
,”
Injury
,
35
(
8
), pp.
759
765
.
3.
Schiff
,
M. A.
,
Tencer
,
A. F.
, and
Mack
,
C. D.
,
2008
, “
Risk Factors for Pelvic Fracture in Lateral Impact Motor Vehicle Crashes
,”
Accid. Anal. Prev.
,
40
(
1
), pp.
387
391
.
4.
Dischinger
,
P. C.
,
Read
,
K. M.
,
Kufera
,
J. A.
,
Kerns
,
T. J.
,
Burch
,
C. A.
,
Jawed
,
N.
,
Ho
,
S. M.
, and
Burgess
,
A. R.
,
2004
, “
Consequences and Costs of Lower Extremity Injuries
,”
48th Annual Association for the Advancement of Automotive Medicine
, Key Biscayne, FL, Sept. 13–15, pp.
339
358
.
5.
Vrahas
,
M.
,
1997
, “
Classification and Biomechanics of Pelvic Ring Injuries
,”
Operative Tech. Orthop.
,
7
(
3
), pp.
162
166
.
6.
Durkin
,
A.
,
Sagi
,
H. C.
,
Durham
,
R.
, and
Flint
,
L.
,
2006
, “
Contemporary Management of Pelvic Fractures
,”
Am. J. Surg.
,
192
(
2
), pp.
211
223
.
7.
Tachibaba
,
T.
,
Yokoi
,
H.
,
Kirita
,
M.
,
Marukawa
,
S.
, and
Yoshiya
,
S.
,
2009
, “
Instability of the Pelvic Ring and Injury Severity Can Be Predictors of Death in Patients With Pelvic Ring Fractures: A Retrospective Study
,”
J. Orthop. Traumatol.
,
10
(
2
), pp.
79
82
.
8.
Freitas
,
C. D.
,
Garotti
,
J. E. R.
,
Nieto
,
J.
,
Guimaraes
,
R. P.
,
Ono
,
N. K.
,
Honda
,
E.
, and
Polesello
,
G. C.
,
2013
, “
There Have Been Changes in the Incidence and Epidemiology of Pelvic Ring Fractures in Recent Decades?
,”
Rev. Bras. Ortop.
,
48
(
6
), pp.
475
481
.
9.
Dyer
,
G. S. M.
, and
Vrahas
,
M. S.
,
2006
, “
Review of the Pathophysiology and Acute Management of Hemorrhage in Pelvic Fracture
,”
Injury
,
37
(
7
), pp.
602
613
.
10.
Stephen
,
D. J. G.
,
2003
, “
(ii) Management of High-Energy Pelvic Fractures
,”
Curr. Orthop.
,
17
(
5
), pp.
335
345
.
11.
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
2005
, “
Response of Side Impact Dummies in Sled Tests
,”
Accid. Anal. Prev.
,
37
(
3
), pp.
495
503
.
12.
Hautmann
,
E.
,
Scherer
,
R.
,
Akiyama
,
A.
,
Page
,
M.
,
Xu
,
L.
,
Kostyniuk
,
G.
,
Sakurai
,
M.
,
Bortenschlager
,
K.
,
Harigae
,
T.
, and
Tylko
,
S.
,
2003
, “
Updated Biofidelity Rating of the Revised WorldSID Prototype Dummy
,”
18th International Technical Conference on the Enhanced Safety of Vehicles
, Nagoya, Japan, May 19–22, pp. 1–25.
13.
ISO,
1999
, “Road Vehicles—Anthropomorphic Side Impact Dummy—Lateral Impact Response Requirements to Assess the Biofidelity of the Dummy,” International Standards Organization, Geneva, Switzerland, Standard No.
ISO/TR 9790:1999
.
14.
Wismans
,
J.
,
Been
,
B.
,
Eggers
,
A.
,
Hynd
,
D.
,
Martinez
,
L.
,
Trosseille
,
X.
,
Davidsson
,
J.
,
Vezin
,
P.
,
Bortenschlager
,
K.
, and
Peluccio
,
S.
,
2009
, “Status of WorldSID 50th Percentile Male Side Impact Dummy,” European Enhanced Vehicle-Safety Committee Working Group 12 (EEVC WG12),
Report
.
15.
Tencer
,
A. F.
,
Kaufman
,
R.
,
Mack
,
C.
, and
Mock
,
C.
,
2005
, “
Factors Affecting Pelvic and Thoracic Forces in Near-Side Impact Crashes: A Study of US-NCAP, NASS, and CIREN Data
,”
Accid. Anal. Prev.
,
37
(
2
), pp.
287
293
.
16.
Vavalle
,
N. A.
,
Davis
,
M. L.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2015
, “
Quantitative Validation of a Human Body Finite Element Model Using Rigid Body Impacts
,”
Ann. Biomed. Eng.
,
43
(
9
), pp.
2163
2174
.
17.
Vavalle
,
N. A.
,
Moreno
,
D. P.
,
Rhyne
,
A. C.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2013
, “
Lateral Impact Validation of a Geometrically Accurate Full Body Finite Element Model for Blunt Injury Prediction
,”
Ann. Biomed Eng.
,
41
(
3
), pp.
497
512
.
18.
Pietsch
,
H. A.
,
Bosch
,
K. E.
,
Weyland
,
D. R.
,
Spratley
,
E. M.
,
Henderson
,
K. A.
,
Salzar
,
R. S.
,
Smith
,
T. A.
,
Sagara
,
B. M.
,
Demetropoulos
,
C. K.
,
Dooley
,
C. J.
, and
Merkle
,
A. C.
,
2016
, “
Evaluation of WIAMan Technology Demonstrator Biofidelity Relative to Sub-Injurious PMHS Response in Simulated Under-Body Blast Events
,”
Stapp Car Crash J.
,
60
, pp.
199
246
.
19.
White
,
N. A.
,
Moreno
,
D. P.
,
Gayzik
,
F. S.
, and
Stitzel
,
J. D.
,
2013
, “
Cross-Sectional Neck Response of a Total Human Body FE Model During Simulated Frontal and Side Automobile Impacts
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(3), pp. 293–315.
20.
White
,
N. A.
,
Danelson
,
K. A.
,
Gayzik
,
F. S.
, and
Stitzel
,
J. D.
,
2014
, “
Head and Neck Response of a Finite Element Anthropomorphic Test Device and Human Body Model During a Simulated Rotary-Wing Aircraft Impact
,”
ASME J. Biomech. Eng.
,
136
(
11
), p. 111001.
21.
Bouquet
,
R.
,
Ramet
,
M.
,
Bermond
,
F.
, and,
Cesari
,
D.
,
1994
, “
Thoracic and Pelvis Human Response to Impact
,”
14th International Technical Conference on the Enhanced Safety of Vehicles
, Munich, Germany, May 23–26, pp.
100
109
.
22.
Bouquet
,
R.
,
Ramet
,
M.
,
Bermond
,
F.
,
Caire
,
Y.
,
Talantikite
,
Y.
,
Robin
,
S.
, and
Voiglio
,
E.
,
1998
, “
Pelvis Human Response to Lateral Impact
,”
16th International Technical Conference on the Enhanced Safety of Vehicles
, Windsor, ON, Canada, May 31–June 4, pp.
1665
1686
.
23.
Park
,
G.
,
Kim
,
T.
,
Crandall
,
J. R.
,
Arregui-Dalmases
,
C.
, and
Luzon-Narro
,
J.
,
2013
, “
Comparison of Kinematics of GHBMC to PMHS on the Side Impact Condition
,”
International Research Council on Biomechanics of Injury Conference
(
IRCOBI
), Gothenburg, Sweden, Sept. 11–13, pp.
368
379
.
24.
Yue
,
N.
, and
Untaroiu
,
C. D.
,
2014
, “
A Numerical Investigation on the Variation in Hip Injury Tolerance With Occupant Posture During Frontal Collisions
,”
Traffic Inj. Prev.
,
15
(
5
), pp.
513
522
.
25.
Davis
,
M. L.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2015
, “
Thoracoabdominal Organ Volumes for Small Women
,”
Traffic Inj. Prev.
,
16
(
6
), pp.
611
617
.
26.
Weaver
,
A. A.
,
Schoell
,
S. L.
, and
Stitzel
,
J. D.
,
2014
, “
Morphometric Analysis of Variation in the Ribs With Age and Sex
,”
J. Anat.
,
225
(
2
), pp.
246
261
.
27.
Eppinger
,
R. H.
,
1976
, “
Prediction of Thoracic Injury Using Measurable Experimental Parameters
,”
Sixth International Technical Conference on the Enhanced Safety of Vehicles
, Washington, DC, Oct. 12–15, pp.
770
779
.
28.
Mertz
,
H. J.
,
1984
, “A Procedure for Normalizing Impact Response Data,”
SAE
Paper No. 840884.
29.
Viano
,
D. C.
,
1989
, “Biomechanical Responses and Injuries in Blunt Lateral Impact,”
SAE
Paper No. 892432.
30.
Yoganandan
,
N.
,
Arun
,
M. W. J.
, and
Pintar
,
F. A.
,
2014
, “
Normalizing and Scaling of Data to Derive Human Response Corridors From Impact Tests
,”
J. Biomech.
,
47
(
8
), pp.
1749
1756
.
31.
Davis
,
M. L.
, and
Gayzik
,
F. S.
,
2016
, “
An Objective Evaluation of Mass Scaling Techniques Utilizing Computational Human Body Finite Element Models
,”
ASME J. Biomech. Eng.
,
138
(
10
), p. 101003.
32.
Gehre
,
C.
,
Gades
,
H.
, and
Wernicke
,
P.
,
2009
, “
Objective Rating of Signals Using Test and Simulation Responses
,”
21st International Technical Conference on the Enhanced Safety of Vehicles
, Stuttgart, Germany, June 15–18, pp. 1–8.
33.
Altman
,
D. G.
,
1991
,
Practical Statistics for Medical Research
,
Chapman and Hall
,
London
.
34.
McMurry
,
T. L.
, and
Poplin
,
G. S.
,
2015
, “
Statistical Considerations in the Development of Injury Risk Functions
,”
Traffic Inj. Prev.
,
16
(
6
), pp.
618
626
.
35.
Fan
,
J.
,
Upadhye
,
S.
, and
Worster
,
A.
,
2006
, “
Understanding Receiver Operator Characteristic (ROC) Curves
,”
Can. J. Emerg. Med.
,
8
(
1
), pp.
19
20
.
36.
Grzybowski
,
M.
, and
Younger
,
J. G.
,
1997
, “Statistical Methodology—Part III: Receiver Operating Characteristic (ROC) Curves,”
Acad. Emerg. Med.
,
4
(
8
), pp.
818
826
.
37.
Peres
,
J.
,
Auer
,
S.
, and
Praxl
,
N.
,
2016
, “
Development and Comparison of Different Injury Risk Functions Predicting Pelvis Fractures in Side Impact for a Human Body Model
,”
International Research Council on Biomechanics of Injury Conference
(
IRCOBI
), Malaga, Spain, Sept. 14–16, pp.
661
678
.
38.
Cesari
,
D.
,
Ramet
,
M.
, and
Bouquet
,
R.
,
1983
, “
Tolerance of Human Pelvis to Fracture and Proposed Pelvic Protection Criterion to Be Measured on Side Impact Dummies
,”
Ninth International Technology Conference on Experimental Safety Vehicles
, Kyoto, Japan, pp.
261
269
.
39.
Cavanaugh
,
J. M.
,
Walilko
,
T. J.
,
Malhotra
,
A.
,
Zhu
,
Y.
, and
King
,
A. L.
,
1990
, “Biomechanical Response and Injury Tolerance of the Pelvis in Twelve Sled Side Impacts,”
SAE
Paper No. 902305.
You do not currently have access to this content.