In vitro systems for applying mechanical strain to cultured cells are commonly used to investigate cellular mechanotransduction pathways in a variety of cell types. These systems often apply mechanical forces to a flexible membrane on which cells are cultured. A consequence of the motion of the membrane in these systems is the generation of flow and the unintended application of shear stress to the cells. We recently described a flexible system for applying mechanical strain to cultured cells, which uses a linear motor to drive a piston array to create biaxial strain within multiwell culture plates. To better understand the fluidic stresses generated by this system and other systems of this type, we created a computational fluid dynamics model to simulate the flow during the mechanical loading cycle. Alterations in the frequency or maximal strain magnitude led to a linear increase in the average fluid velocity within the well and a nonlinear increase in the shear stress at the culture surface over the ranges tested (0.5–2.0 Hz and 1–10% maximal strain). For all cases, the applied shear stresses were relatively low and on the order of millipascal with a dynamic waveform having a primary and secondary peak in the shear stress over a single mechanical strain cycle. These findings should be considered when interpreting experimental results using these devices, particularly in the case when the cell type used is sensitive to low magnitude, oscillatory shear stresses.

References

1.
Mammoto
,
T.
,
Mammoto
,
A.
, and
Ingber
,
D. E.
,
2013
, “
Mechanobiology and Developmental Control
,”
Annu. Rev. Cell Dev. Biol.
,
29
, pp.
27
61
.10.1146/annurev-cellbio-101512-122340
2.
Chiu
,
J. J.
, and
Chien
,
S.
,
2011
, “
Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives
,”
Physiol. Rev.
,
91
(
1
), pp.
327
387
.10.1152/physrev.00047.2009
3.
Koskinas
,
K. C.
,
Chatzizisis
,
Y. S.
,
Baker
,
A. B.
,
Edelman
,
E. R.
,
Stone
,
P. H.
, and
Feldman
,
C. L.
,
2009
, “
The Role of Low Endothelial Shear Stress in the Conversion of Atherosclerotic Lesions From Stable to Unstable Plaque
,”
Curr. Opin. Cardiol.
,
24
(
6
), pp.
580
590
.10.1097/HCO.0b013e328331630b
4.
Makale
,
M.
,
2007
, “
Cellular Mechanobiology and Cancer Metastasis
,”
Birth Defects Res.
, Part C,
81
(
4
), pp.
329
343
.10.1002/bdrc.20110
5.
Suresh
,
S.
,
2007
, “
Biomechanics and Biophysics of Cancer Cells
,”
Acta Biomater.
,
3
(
4
), pp.
413
438
.10.1016/j.actbio.2007.04.002
6.
Laplaca
,
M. C.
, and
Prado
,
G. R.
,
2010
, “
Neural Mechanobiology and Neuronal Vulnerability to Traumatic Loading
,”
J. Biomech.
,
43
(
1
), pp.
71
78
.10.1016/j.jbiomech.2009.09.011
7.
Uversky
,
V. N.
, and
Eliezer
,
D.
,
2009
, “
Biophysics of Parkinson's Disease: Structure and Aggregation of Alpha-Synuclein
,”
Curr. Protein Pept. Sci.
,
10
(
5
), pp.
483
499
.10.2174/138920309789351921
8.
Brown
,
T. D.
,
2000
, “
Techniques for Mechanical Stimulation of Cells In Vitro: A Review
,”
J. Biomech.
,
33
(
1
), pp.
3
14
.10.1016/S0021-9290(99)00177-3
9.
Kim
,
D. H.
,
Wong
,
P. K.
,
Park
,
J.
,
Levchenko
,
A.
, and
Sun
,
Y.
,
2009
, “
Microengineered Platforms for Cell Mechanobiology
,”
Annu. Rev. Biomed. Eng.
,
11
, pp.
203
233
.10.1146/annurev-bioeng-061008-124915
10.
Schulz
,
R. M.
, and
Bader
,
A.
,
2007
, “
Cartilage Tissue Engineering and Bioreactor Systems for the Cultivation and Stimulation of Chondrocytes
,”
Eur. Biophys. J.
,
36
(
4–5
), pp.
539
568
.10.1007/s00249-007-0139-1
11.
Lee
,
A. A.
,
Delhaas
,
T.
,
Waldman
,
L. K.
,
MacKenna
,
D. A.
,
Villarreal
,
F. J.
, and
McCulloch
,
A. D.
,
1996
, “
An Equibiaxial Strain System for Cultured Cells
,”
Am. J. Physiol.
,
271
(
4 Pt. 1
), p.
C1400
.
12.
Lee
,
J.
,
Wong
,
M.
,
Smith
,
Q.
, and
Baker
,
A. B.
,
2013
, “
A Novel System for Studying Mechanical Strain Waveform-Dependent Responses in Vascular Smooth Muscle Cells
,”
Lab Chip
,
13
(
23
), pp.
4573
4582
.10.1039/c3lc50894c
13.
Schaffer
,
J. L.
,
Rizen
,
M.
,
L'Italien
,
G. J.
,
Benbrahim
,
A.
,
Megerman
,
J.
,
Gerstenfeld
,
L. C.
, and
Gray
,
M. L.
,
1994
, “
Device for the Application of a Dynamic Biaxially Uniform and Isotropic Strain to a Flexible Cell Culture Membrane
,”
J. Orthop. Res.
,
12
(
5
), pp.
709
719
.10.1002/jor.1100120514
14.
Sotoudeh
,
M.
,
Jalali
,
S.
,
Usami
,
S.
,
Shyy
,
J. Y.
, and
Chien
,
S.
,
1998
, “
A Strain Device Imposing Dynamic and Uniform Equi-Biaxial Strain to Cultured Cells
,”
Ann. Biomed. Eng.
,
26
(
2
), pp.
181
189
.10.1114/1.88
15.
Bieler
,
F. H.
,
Ott
,
C. E.
,
Thompson
,
M. S.
,
Seidel
,
R.
,
Ahrens
,
S.
,
Epari
,
D. R.
,
Wilkening
,
U.
,
Schaser
,
K. D.
,
Mundlos
,
S.
, and
Duda
,
G. N.
,
2009
, “
Biaxial Cell Stimulation: A Mechanical Validation
,”
J. Biomech.
,
42
(
11
), pp.
1692
1696
.10.1016/j.jbiomech.2009.04.013
16.
Simmons
,
C. S.
,
Sim
,
J. Y.
,
Baechtold
,
P.
,
Gonzalez
,
A.
,
Chung
,
C.
,
Borghi
,
N.
, and
Pruitt
,
B. L.
,
2011
, “
Integrated Strain Array for Cellular Mechanobiology Studies
,”
J. Micromech. Microeng.
,
21
(
5
), pp.
54016
54025
.10.1088/0960-1317/21/5/054016
17.
Vande Geest
,
J. P.
,
Di Martino
,
E. S.
, and
Vorp
,
D. A.
,
2004
, “
An Analysis of the Complete Strain Field Within Flexercell Membranes
,”
J. Biomech.
,
37
(
12
), pp.
1923
1928
.10.1016/j.jbiomech.2004.02.022
18.
Chatzizisis
,
Y. S.
,
Coskun
,
A. U.
,
Jonas
,
M.
,
Edelman
,
E. R.
,
Feldman
,
C. L.
, and
Stone
,
P. H.
,
2007
, “
Role of Endothelial Shear Stress in the Natural History of Coronary Atherosclerosis and Vascular Remodeling: Molecular, Cellular, and Vascular Behavior
,”
J. Am. Coll. Cardiol.
,
49
(
25
), pp.
2379
2393
.10.1016/j.jacc.2007.02.059
19.
Hsiai
,
T. K.
,
Cho
,
S. K.
,
Wong
,
P. K.
,
Ing
,
M.
,
Salazar
,
A.
,
Sevanian
,
A.
,
Navab
,
M.
,
Demer
,
L. L.
, and
Ho
,
C. M.
,
2003
, “
Monocyte Recruitment to Endothelial Cells in Response to Oscillatory Shear Stress
,”
FASEB J.
,
17
(
12
), pp.
1648
1657
.10.1096/fj.02-1064com
20.
Hwang
,
J.
,
Saha
,
A.
,
Boo
,
Y. C.
,
Sorescu
,
G. P.
,
McNally
,
J. S.
,
Holland
,
S. M.
,
Dikalov
,
S.
,
Giddens
,
D. P.
,
Griendling
,
K. K.
,
Harrison
,
D. G.
, and
Jo
,
H.
,
2003
, “
Oscillatory Shear Stress Stimulates Endothelial Production of O2- From p47phox-Dependent NAD(P)H Oxidases, Leading to Monocyte Adhesion
,”
J. Biol. Chem.
,
278
(
47
), pp.
47291
47298
.10.1074/jbc.M305150200
21.
Yin
,
W.
,
Shanmugavelayudam
,
S. K.
, and
Rubenstein
,
D. A.
,
2011
, “
The Effect of Physiologically Relevant Dynamic Shear Stress on Platelet and Endothelial Cell Activation
,”
Thromb. Res.
,
127
(
3
), pp.
235
241
.10.1016/j.thromres.2010.11.021
22.
Awolesi
,
M. A.
,
Widmann
,
M. D.
,
Sessa
,
W. C.
, and
Sumpio
,
B. E.
,
1994
, “
Cyclic Strain Increases Endothelial Nitric Oxide Synthase Activity
,”
Surgery
,
116
(
2
), pp.
439
444
.
23.
Xiao
,
Z.
,
Zhang
,
Z.
,
Ranjan
,
V.
, and
Diamond
,
S. L.
,
1997
, “
Shear Stress Induction of the Endothelial Nitric Oxide Synthase Gene is Calcium-Dependent but Not Calcium-Activated
,”
J. Cell. Physiol.
,
171
(
2
), pp.
205
211
.10.1002/(SICI)1097-4652(199705)171:2<205::AID-JCP11>3.0.CO;2-C
24.
Boutahar
,
N.
,
Guignandon
,
A.
,
Vico
,
L.
, and
Lafage-Proust
,
M. H.
,
2004
, “
Mechanical Strain on Osteoblasts Activates Autophosphorylation of Focal Adhesion Kinase and Proline-Rich Tyrosine Kinase 2 Tyrosine Sites Involved in ERK Activation
,”
J. Biol. Chem.
,
279
(
29
), pp.
30588
30599
.10.1074/jbc.M313244200
25.
Kapur
,
S.
,
Baylink
,
D. J.
, and
Lau
,
K. H.
,
2003
, “
Fluid Flow Shear Stress Stimulates Human Osteoblast Proliferation and Differentiation Through Multiple Interacting and Competing Signal Transduction Pathways
,”
Bone
,
32
(
3
), pp.
241
251
.10.1016/S8756-3282(02)00979-1
26.
Iwasaki
,
H.
,
Eguchi
,
S.
,
Ueno
,
H.
,
Marumo
,
F.
, and
Hirata
,
Y.
,
2000
, “
Mechanical Stretch Stimulates Growth of Vascular Smooth Muscle Cells Via Epidermal Growth Factor Receptor
,”
Am. J. Physiol. Heart Circ. Physiol.
,
278
(
2
), pp.
H521
H529
.
27.
Ueba
,
H.
,
Kawakami
,
M.
, and
Yaginuma
,
T.
,
1997
, “
Shear Stress as an Inhibitor of Vascular Smooth Muscle Cell Proliferation. Role of Transforming Growth Factor-Beta 1 and Tissue-Type Plasminogen Activator
,”
Arterioscler. Thromb. Vasc. Biol.
,
17
(
8
), pp.
1512
1516
.10.1161/01.ATV.17.8.1512
28.
Song
,
G.
,
Ju
,
Y.
,
Shen
,
X.
,
Luo
,
Q.
,
Shi
,
Y.
, and
Qin
,
J.
,
2007
, “
Mechanical Stretch Promotes Proliferation of Rat Bone Marrow Mesenchymal Stem Cells
,”
Colloids Surf. B
,
58
(
2
), pp.
271
277
.10.1016/j.colsurfb.2007.04.001
29.
Yourek
,
G.
,
McCormick
,
S. M.
,
Mao
,
J. J.
, and
Reilly
,
G. C.
,
2010
, “
Shear Stress Induces Osteogenic Differentiation of Human Mesenchymal Stem Cells
,”
Regener. Med.
,
5
(
5
), pp.
713
724
.10.2217/rme.10.60
30.
Thompson
,
M. S.
,
Abercrombie
,
S. R.
,
Ott
,
C. E.
,
Bieler
,
F. H.
,
Duda
,
G. N.
, and
Ventikos
,
Y.
,
2011
, “
Quantification and Significance of Fluid Shear Stress Field in Biaxial Cell Stretching Device
,”
Biomech. Model Mechanobiol.
,
10
(
4
), pp.
559
564
.10.1007/s10237-010-0255-1
31.
Davies
,
P. F.
,
Remuzzi
,
A.
,
Gordon
,
E. J.
,
Dewey
,
C. F.
, Jr.
, and
Gimbrone
,
M. A.
, Jr.
,
1986
, “
Turbulent Fluid Shear Stress Induces Vascular Endothelial Cell Turnover In Vitro
,”
Proc. Natl. Acad. Sci. USA
,
83
(
7
), pp.
2114
2117
.10.1073/pnas.83.7.2114
32.
Ziegler
,
T.
,
Bouzourene
,
K.
,
Harrison
,
V. J.
,
Brunner
,
H. R.
, and
Hayoz
,
D.
,
1998
, “
Influence of Oscillatory and Unidirectional Flow Environments on the Expression of Endothelin and Nitric Oxide Synthase in Cultured Endothelial Cells
,”
Arterioscler. Thromb. Vasc. Biol.
,
18
(
5
), pp.
686
692
.10.1161/01.ATV.18.5.686
33.
White
,
F. M.
,
2003
,
Fluid Mechanics
,
McGraw-Hill
,
Boston, MA
.
34.
Voyvodic
,
P. L.
,
Min
,
D.
,
Liu
,
R.
,
Williams
,
E.
,
Chitalia
,
V.
,
Dunn
,
A. K.
, and
Baker
,
A. B.
,
2014
, “
Loss of Syndecan-1 Induces a Pro-Inflammatory Phenotype in Endothelial Cells With a Dysregulated Response to Atheroprotective Flow
,”
J. Biol. Chem.
,
289
(
14
), pp.
9547
9559
.10.1074/jbc.M113.541573
You do not currently have access to this content.