Computational modeling and simulation of neuromusculoskeletal (NMS) systems enables researchers and clinicians to study the complex dynamics underlying human and animal movement. NMS models use equations derived from physical laws and biology to help solve challenging real-world problems, from designing prosthetics that maximize running speed to developing exoskeletal devices that enable walking after a stroke. NMS modeling and simulation has proliferated in the biomechanics research community over the past 25 years, but the lack of verification and validation standards remains a major barrier to wider adoption and impact. The goal of this paper is to establish practical guidelines for verification and validation of NMS models and simulations that researchers, clinicians, reviewers, and others can adopt to evaluate the accuracy and credibility of modeling studies. In particular, we review a general process for verification and validation applied to NMS models and simulations, including careful formulation of a research question and methods, traditional verification and validation steps, and documentation and sharing of results for use and testing by other researchers. Modeling the NMS system and simulating its motion involves methods to represent neural control, musculoskeletal geometry, muscle–tendon dynamics, contact forces, and multibody dynamics. For each of these components, we review modeling choices and software verification guidelines; discuss variability, errors, uncertainty, and sensitivity relationships; and provide recommendations for verification and validation by comparing experimental data and testing robustness. We present a series of case studies to illustrate key principles. In closing, we discuss challenges the community must overcome to ensure that modeling and simulation are successfully used to solve the broad spectrum of problems that limit human mobility.

References

1.
Nørgaard
,
B. L.
,
Leipsic
,
J.
,
Gaur
,
S.
,
Seneviratne
,
S.
,
Ko
,
B. S.
,
Ito
,
H.
,
Jensen
,
J. M.
,
Mauri
,
L.
,
De Bruyne
,
B.
,
Bezerra
,
H.
,
Osawa
,
K.
,
Marwan
,
M.
,
Naber
,
C.
,
Erglis
,
A.
,
Park
,
S.-J.
,
Christiansen
,
E. H.
,
Kaltoft
,
A.
,
Lassen
,
J. F.
,
Bøtker
,
H. E.
, and
Achenbach
,
S.
,
2014
, “
Diagnostic Performance of Noninvasive Fractional Flow Reserve Derived From Coronary Computed Tomography Angiography in Suspected Coronary Artery Disease: The NXT Trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps)
,”
J. Am. Coll. Cardiol.
,
63
(
12
), pp.
1145
1155
.10.1016/j.jacc.2013.11.043
2.
Thacker
,
B. H.
,
2001
, “
ASME Standards Committee on Verification and Validation in Computational Solid Mechanics
,” Technical Report, ASME Council on Codes and Standards.
3.
Anderson
,
A. E.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
,
2007
, “
Verification, Validation and Sensitivity Studies in Computational Biomechanics
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
(
3
), pp.
171
184
.10.1080/10255840601160484
4.
Henninger
,
H. B.
,
Reese
,
S. P.
,
Anderson
,
A. E.
, and
Weiss
,
J. A.
,
2010
, “
Validation of Computational Models in Biomechanics
,”
Proc. Inst. Mech. Eng., Part H
,
224
(
7
), pp.
801
812
.10.1243/09544119JEIM649
5.
Lund
,
M. E.
,
de Zee
,
M.
,
Andersen
,
M. S.
, and
Rasmussen
,
J.
,
2012
, “
On Validation of Multibody Musculoskeletal Models
,”
Proc. Inst. Mech. Eng., Part H
,
226
(
2
), pp.
82
94
.10.1177/0954411911431516
6.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
opensim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
7.
Arnold
,
E. M.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Delp
,
S. L.
,
2010
, “
A Model of the Lower Limb for Analysis of Human Movement
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
269
279
.10.1007/s10439-009-9852-5
8.
Arnold
,
E. M.
,
Hamner
,
S. R.
,
Seth
,
A.
,
Millard
,
M.
, and
Delp
,
S. L.
,
2013
, “
How Muscle Fiber Lengths and Velocities Affect Muscle Force Generation as Humans Walk and Run at Different Speeds
,”
J. Exp. Biol.
,
216
(
11
), pp.
2150
2160
.10.1242/jeb.075697
9.
Arnold
,
E. M.
, and
Delp
,
S. L.
,
2011
, “
Fibre Operating Lengths of Human Lower Limb Muscles During Walking
,”
Philos. Trans. R. Soc., B
,
366
(
1570
), pp.
1530
1539
.10.1098/rstb.2010.0345
10.
Hamner
,
S. R.
,
Seth
,
A.
,
Steele
,
K. M.
, and
Delp
,
S. L.
,
2013
, “
A Rolling Constraint Reproduces Ground Reaction Forces and Moments in Dynamic Simulations of Walking, Running, and Crouch Gait
,”
J. Biomech.
,
46
(
10
), pp.
1772
1776
.10.1016/j.jbiomech.2013.03.030
11.
Hamner
,
S. R.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2010
, “
Muscle Contributions to Propulsion and Support During Running
,”
J. Biomech.
,
43
(
14
), pp.
2709
2716
.10.1016/j.jbiomech.2010.06.025
12.
Hamner
,
S. R.
, and
Delp
,
S. L.
,
2013
, “
Muscle Contributions to Fore-Aft and Vertical Body Mass Center Accelerations Over a Range of Running Speeds
,”
J. Biomech.
,
46
(
4
), pp.
780
787
.10.1016/j.jbiomech.2012.11.024
13.
Woltring
,
H. J.
,
1986
, “
A Fortran Package for Generalized, Cross-Validatory Spline Smoothing and Differentiation
,”
Adv. Eng. Software 1978
,
8
(
2
), pp.
104
113
.
14.
Wächter
,
A.
, and
Biegler
,
L. T.
,
2006
, “
On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Program.
,
106
(
1
), pp.
25
57
.10.1007/s10107-004-0559-y
15.
Seth
,
A.
,
Sherman
,
M.
,
Reinbolt
,
J. A.
, and
Delp
,
S. L.
,
2011
, “
opensim: A Musculoskeletal Modeling and Simulation Framework for In Silico Investigations and Exchange
,”
Procedia IUTAM
,
2
, pp.
212
232
.10.1016/j.piutam.2011.04.021
16.
Sherman
,
M. A.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2011
, “
simbody: Multibody Dynamics for Biomedical Research
,”
Procedia IUTAM
,
2
, pp.
241
261
.10.1016/j.piutam.2011.04.023
17.
Reddy
,
M.
,
2011
,
API Design for C++
,
Elsevier
,
Burlington, MA
.
18.
Robinson
,
J. A.
,
2004
,
Software Design for Engineers and Scientists
,
Elsevier
,
Jordan Hill, Oxford, UK
.
19.
Laz
,
P. J.
, and
Browne
,
M.
,
2010
, “
A Review of Probabilistic Analysis in Orthopaedic Biomechanics
,”
Proc. Inst. Mech. Eng., Part H
,
224
(
8
), pp.
927
943
.10.1243/09544119JEIM739
20.
Hamby
,
D. M.
,
1994
, “
A Review of Techniques for Parameter Sensitivity Analysis of Environmental Models
,”
Environ. Monit. Assess.
,
32
(
2
), pp.
135
154
.10.1007/BF00547132
21.
Reinbolt
,
J. A.
,
Schutte
,
J. F.
,
Fregly
,
B. J.
,
Koh
,
B. I.
,
Haftka
,
R. T.
,
George
,
A. D.
, and
Mitchell
,
K. H.
,
2005
, “
Determination of Patient-Specific Multi-Joint Kinematic Models Through Two-Level Optimization
,”
J. Biomech.
,
38
(
3
), pp.
621
626
.10.1016/j.jbiomech.2004.03.031
22.
Valero-Cuevas
,
F. J.
,
Johanson
,
M. E.
, and
Towles
,
J. D.
,
2003
, “
Towards a Realistic Biomechanical Model of the Thumb: The Choice of Kinematic Description May be More Critical Than the Solution Method or the Variability/Uncertainty of Musculoskeletal Parameters
,”
J. Biomech.
,
36
(
7
), pp.
1019
1030
.10.1016/S0021-9290(03)00061-7
23.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.10.1016/S0951-8320(03)00058-9
24.
Box
,
G. E. P.
, and
Tiao
,
G. C.
,
1973
,
Bayesian Inference in Statistical Analysis
, Addison-Wesley, Reading, MA.
25.
Haldar
,
A.
, and
Mahadevan
,
S.
,
2000
,
Probability, Reliability, and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
26.
Melchers
,
R. E.
,
1987
,
Structural Reliability: Analysis and Prediction
,
Ellis Horwood
,
Chichester, UK
.
27.
Kepple
,
T. M.
,
Arnold
,
A. S.
,
Stanhope
,
S. J.
, and
Siegel
,
K. L.
,
1994
, “
Assessment of a Method to Estimate Muscle Attachments From Surface Landmarks: A 3D Computer Graphics Approach
,”
J. Biomech.
,
27
(
3
), pp.
365
371
.10.1016/0021-9290(94)90012-4
28.
Cappozzo
,
A.
,
Catani
,
F.
,
Leardini
,
A.
,
Benedetti
,
M. G.
, and
Della Croce
,
U.
,
1996
, “
Position and Orientation in Space of Bones During Movement: Experimental Artefacts
,”
Clin. Biomech.
,
11
(
2
), pp.
90
100
.10.1016/0268-0033(95)00046-1
29.
Lu
,
T.-W.
, and
O'Connor
,
J. J.
,
1999
, “
Bone Position Estimation From Skin Marker Co-Ordinates Using Global Optimisation With Joint Constraints
,”
J. Biomech.
,
32
(
2
), pp.
129
134
.10.1016/S0021-9290(98)00158-4
30.
Kane
,
T. R.
,
Likins
,
P. W.
, and
Levinson
,
D. A.
,
1983
,
Spacecraft Dynamics
,
McGraw Hill
,
New York
.
31.
Schiehlen
,
W.
, ed.,
1990
,
Multibody Systems Handbook
,
Springer-Verlag
,
Berlin, Germany
.10.1007/978-3-642-50995-7
32.
Hollars
,
M. G.
,
Rosenthal
,
D. E.
, and
Sherman
,
M. A.
,
1994
,
SD/FAST User's Manual
,
Ver. B.2, Symbolic Dynamics, Inc.
,
Mountain View, CA
.
33.
Seth
,
A.
,
Sherman
,
M.
,
Eastman
,
P.
, and
Delp
,
S.
,
2010
, “
Minimal Formulation of Joint Motion for Biomechanisms
,”
Nonlinear Dyn.
,
62
(
1–2
), pp.
291
303
.10.1007/s11071-010-9717-3
34.
Shabana
,
A. A.
,
2013
,
Dynamics of Multibody Systems
,
3rd ed., Cambridge University Press
,
Cambridge, UK
.10.1017/CBO9781107337213
35.
Chiari
,
L.
,
Della Croce
,
U.
,
Leardini
,
A.
, and
Cappozzo
,
A.
,
2005
, “
Human Movement Analysis Using Stereophotogrammetry. Part 2: Instrumental Errors
,”
Gait Posture
,
21
(
2
), pp.
197
211
.10.1016/j.gaitpost.2004.04.004
36.
Leardini
,
A.
,
Chiari
,
L.
,
Della Croce
,
U.
, and
Cappozzo
,
A.
,
2005
, “
Human Movement Analysis Using Stereophotogrammetry. Part 3. Soft Tissue Artifact Assessment and Compensation
,”
Gait Posture
,
21
(
2
), pp.
212
225
.10.1016/j.gaitpost.2004.05.002
37.
Pàmies-Vilà
,
R.
,
Font-Llagunes
,
J. M.
,
Cuadrado
,
J.
, and
Alonso
,
F. J.
,
2012
, “
Analysis of Different Uncertainties in the Inverse Dynamic Analysis of Human Gait
,”
Mech. Mach. Theory
,
58
, pp.
153
164
.10.1016/j.mechmachtheory.2012.07.010
38.
Silva
,
M. P. T.
, and
Ambrósio
,
J. A. C.
,
2004
, “
Sensitivity of the Results Produced by the Inverse Dynamic Analysis of a Human Stride to Perturbed Input Data
,”
Gait Posture
,
19
(
1
), pp.
35
49
.10.1016/S0966-6362(03)00013-4
39.
Schwartz
,
M. H.
,
Rozumalski
,
A.
, and
Trost
,
J. P.
,
2008
, “
The Effect of Walking Speed on the Gait of Typically Developing Children
,”
J. Biomech.
,
41
(
8
), pp.
1639
1650
.10.1016/j.jbiomech.2008.03.015
40.
Della Croce
,
U.
,
Leardini
,
A.
,
Chiari
,
L.
, and
Cappozzo
,
A.
,
2005
, “
Human Movement Analysis Using Stereophotogrammetry. Part 4: Assessment of Anatomical Landmark Misplacement and Its Effects on Joint Kinematics
,”
Gait Posture
,
21
(
2
), pp.
226
237
.10.1016/j.gaitpost.2004.05.003
41.
Kuo
,
A. D.
,
1998
, “
A Least-Squares Estimation Approach to Improving the Precision of Inverse Dynamics Computations
,”
ASME J. Biomech. Eng.
,
120
(
1
), pp.
148
159
.10.1115/1.2834295
42.
Thelen
,
D. G.
,
Anderson
,
F. C.
, and
Delp
,
S. L.
,
2003
, “
Generating Dynamic Simulations of Movement Using Computed Muscle Control
,”
J. Biomech.
,
36
(
3
), pp.
321
328
.10.1016/S0021-9290(02)00432-3
43.
Crowninshield
,
R. D.
, and
Brand
,
R. A.
,
1981
, “
A Physiologically Based Criterion of Muscle Force Prediction in Locomotion
,”
J. Biomech.
,
14
(
11
), pp.
793
801
.10.1016/0021-9290(81)90035-X
44.
McConville
,
J. T.
,
Clauser
,
C. E.
,
Churchill
,
T. D.
,
Cuzzi
,
J.
, and
Kaleps
,
I.
,
1980
, “
Anthropometric Relationships of Body and Body Segment Moments of Inertia
,” Anthropology Research Project, Inc., Yellow Springs, OH, Technical Report No. AFAMRL-TR-80-119.
45.
Zatsiorsky
,
V. M.
, and
Seluyanov
,
V. N.
,
1983
, “
The Mass and Inertia Characteristics of the Main Segments of the Human Body
,”
Proceedings of the 8th International Congress of Biomechanics
,
H.
Matsui
and
K.
Kobayashi
, eds.,
Human Kinetic Publishers
,
Champaign, IL
, pp.
1152
1159
.
46.
Chen
,
S.-C.
,
Hsieh
,
H.-J.
,
Lu
,
T.-W.
, and
Tseng
,
C.-H.
,
2011
, “
A Method for Estimating Subject-Specific Body Segment Inertial Parameters in Human Movement Analysis
,”
Gait Posture
,
33
(
4
), pp.
695
700
.10.1016/j.gaitpost.2011.03.004
47.
Damavandi
,
M.
,
Farahpour
,
N.
, and
Allard
,
P.
,
2009
, “
Determination of Body Segment Masses and Centers of Mass Using a Force Plate Method in Individuals of Different Morphology
,”
Med. Eng. Phys.
,
31
(
9
), pp.
1187
1194
.10.1016/j.medengphy.2009.07.015
48.
Pataky
,
T. C.
,
Zatsiorsky
,
V. M.
, and
Challis
,
J. H.
,
2003
, “
A Simple Method to Determine Body Segment Masses In Vivo: Reliability, Accuracy and Sensitivity Analysis
,”
Clin. Biomech.
,
18
(
4
), pp.
364
368
.10.1016/S0268-0033(03)00015-9
49.
Ehrig
,
R. M.
,
Taylor
,
W. R.
,
Duda
,
G. N.
, and
Heller
,
M. O.
,
2007
, “
A Survey of Formal Methods for Determining Functional Joint Axes
,”
J. Biomech.
,
40
(
10
), pp.
2150
2157
.10.1016/j.jbiomech.2006.10.026
50.
MacWilliams
,
B. A.
,
2008
, “
A Comparison of Four Functional Methods to Determine Centers and Axes of Rotations
,”
Gait Posture
,
28
(
4
), pp.
673
679
.10.1016/j.gaitpost.2008.05.010
51.
Lenaerts
,
G.
,
Bartels
,
W.
,
Gelaude
,
F.
,
Mulier
,
M.
,
Spaepen
,
A.
,
Van der Perre
,
G.
, and
Jonkers
,
I.
,
2009
, “
Subject-Specific Hip Geometry and Hip Joint Centre Location Affects Calculated Contact Forces at the Hip During Gait
,”
J. Biomech.
,
42
(
9
), pp.
1246
1251
.10.1016/j.jbiomech.2009.03.037
52.
Yamaguchi
,
G. T.
, and
Zajac
,
F. E.
,
1989
, “
A Planar Model of the Knee Joint to Characterize the Knee Extensor Mechanism
,”
J. Biomech.
,
22
(
1
), pp.
1
10
.10.1016/0021-9290(89)90179-6
53.
Steele
,
K. M.
,
DeMers
,
M. S.
,
Schwartz
,
M. H.
, and
Delp
,
S. L.
,
2012
, “
Compressive Tibiofemoral Force During Crouch Gait
,”
Gait Posture
,
35
(
4
), pp.
556
560
.10.1016/j.gaitpost.2011.11.023
54.
Siegler
,
S.
,
Chen
,
J.
, and
Schneck
,
C. D.
,
1988
, “
The Three-Dimensional Kinematics and Flexibility Characteristics of the Human Ankle and Subtalar Joints—Part I: Kinematics
,”
ASME J. Biomech. Eng.
,
110
(
4
), pp.
364
373
.10.1115/1.3108455
55.
van Eijden
,
T. M. G. J.
,
Kouwenhoven
,
E.
,
Verburg
,
J.
, and
Weijs
,
W. A.
,
1986
, “
A Mathematical Model of the Patellofemoral Joint
,”
J. Biomech.
,
19
(
3
), pp.
219
229
.10.1016/0021-9290(86)90154-5
56.
Isman
,
R. E.
, and
Inman
,
V. T.
,
1968
, “
Anthropometric Studies of the Human Foot and Ankle
,” University of California, San Francisco and Berkeley, Technical Report No. 58.
57.
Lafortune
,
M. A.
,
Cavanagh
,
P. R.
,
Sommer
,
H. J.
, and
Kalenak
,
A.
,
1992
, “
Three-Dimensional Kinematics of the Human Knee During Walking
,”
J. Biomech.
,
25
(
4
), pp.
347
357
.10.1016/0021-9290(92)90254-X
58.
Walker
,
P. S.
,
Rovick
,
J. S.
, and
Robertson
,
D. D.
,
1988
, “
The Effects of Knee Brace Hinge Design and Placement on Joint Mechanics
,”
J. Biomech.
,
21
(
11
), pp.
965
974
.10.1016/0021-9290(88)90135-2
59.
Anderst
,
W.
,
Zauel
,
R.
,
Bishop
,
J.
,
Demps
,
E.
, and
Tashman
,
S.
,
2009
, “
Validation of Three-Dimensional Model-Based Tibio-Femoral Tracking During Running
,”
Med. Eng. Phys.
,
31
(
1
), pp.
10
16
.10.1016/j.medengphy.2008.03.003
60.
An
,
K. N.
,
Ueba
,
Y.
,
Chao
,
E. Y.
,
Cooney
,
W. P.
, and
Linscheid
,
R. L.
,
1983
, “
Tendon Excursion and Moment Arm of Index Finger Muscles
,”
J. Biomech.
,
16
(
6
), pp.
419
425
.10.1016/0021-9290(83)90074-X
61.
An
,
K. N.
,
Takahashi
,
K.
,
Harrigan
,
T. P.
, and
Chao
,
E. Y.
,
1984
, “
Determination of Muscle Orientations and Moment Arms
,”
ASME J. Biomech. Eng.
,
106
(
3
), pp.
280
282
.10.1115/1.3138494
62.
Spoor
,
C. W.
, and
van Leeuwen
,
J. L.
,
1992
, “
Knee Muscle Moment Arms From MRI and From Tendon Travel
,”
J. Biomech.
,
25
(
2
), pp.
201
206
.10.1016/0021-9290(92)90276-7
63.
Arnold
,
A. S.
,
Salinas
,
S.
,
Asakawa
,
D. J.
, and
Delp
,
S. L.
,
2000
, “
Accuracy of Muscle Moment Arms Estimated From MRI-Based Musculoskeletal Models of the Lower Extremity
,”
Comput. Aided Surg.
,
5
(
2
), pp.
108
119
.10.3109/10929080009148877
64.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
,
1990
, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
,
37
(
8
), pp.
757
767
.10.1109/10.102791
65.
Horsman
,
M. D. K.
,
Koopman
,
H. F. J. M.
,
van der Helm
,
F. C. T.
,
Prosé
,
L. P.
, and
Veeger
,
H. E. J.
,
2007
, “
Morphological Muscle and Joint Parameters for Musculoskeletal Modelling of the Lower Extremity
,”
Clin. Biomech.
,
22
(
2
), pp.
239
247
.10.1016/j.clinbiomech.2006.10.003
66.
Murray
,
W. M.
,
Buchanan
,
T. S.
, and
Delp
,
S. L.
,
2002
, “
Scaling of Peak Moment Arms of Elbow Muscles With Upper Extremity Bone Dimensions
,”
J. Biomech.
,
35
(
1
), pp.
19
26
.10.1016/S0021-9290(01)00173-7
67.
Scheys
,
L.
,
Van Campenhout
,
A.
,
Spaepen
,
A.
,
Suetens
,
P.
, and
Jonkers
,
I.
,
2008
, “
Personalized MR-Based Musculoskeletal Models Compared to Rescaled Generic Models in the Presence of Increased Femoral Anteversion: Effect on Hip Moment Arm Lengths
,”
Gait Posture
,
28
(
3
), pp.
358
365
.10.1016/j.gaitpost.2008.05.002
68.
Holzbaur
,
K. R. S.
,
Murray
,
W. M.
, and
Delp
,
S. L.
,
2005
, “
A Model of the Upper Extremity for Simulating Musculoskeletal Surgery and Analyzing Neuromuscular Control
,”
Ann. Biomed. Eng.
,
33
(
6
), pp.
829
840
.10.1007/s10439-005-3320-7
69.
Sherman
,
M. A.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2013
, “
What is a Moment Arm? Calculating Muscle Effectiveness in Biomechanical Models Using Generalized Coordinates
,”
ASME
Paper No. V07BT10A052.10.1115/DETC2013-13633
70.
Jensen
,
R. K.
,
1989
, “
Changes in Segment Inertia Proportions Between 4 and 20 Years
,”
J. Biomech.
,
22
(
6–7
), pp.
529
536
.10.1016/0021-9290(89)90004-3
71.
Pavol
,
M. J.
,
Owings
,
T. M.
, and
Grabiner
,
M. D.
,
2002
, “
Body Segment Inertial Parameter Estimation for the General Population of Older Adults
,”
J. Biomech.
,
35
(
5
), pp.
707
712
.10.1016/S0021-9290(01)00250-0
72.
Ganley
,
K. J.
, and
Powers
,
C. M.
,
2004
, “
Determination of Lower Extremity Anthropometric Parameters Using Dual Energy X-Ray Absorptiometry: The Influence on Net Joint Moments During Gait
,”
Clin. Biomech.
,
19
(
1
), pp.
50
56
.10.1016/j.clinbiomech.2003.08.002
73.
Pearsall
,
D. J.
, and
Costigan
,
P. A.
,
1999
, “
The Effect of Segment Parameter Error on Gait Analysis Results
,”
Gait Posture
,
9
(
3
), pp.
173
183
.10.1016/S0966-6362(99)00011-9
74.
Rao
,
G.
,
Amarantini
,
D.
,
Berton
,
E.
, and
Favier
,
D.
,
2006
, “
Influence of Body Segments' Parameters Estimation Models on Inverse Dynamics Solutions During Gait
,”
J. Biomech.
,
39
(
8
), pp.
1531
1536
.10.1016/j.jbiomech.2005.04.014
75.
Grood
,
E. S.
,
Suntay
,
W. J.
,
Noyes
,
F. R.
, and
Butler
,
D. L.
,
1984
, “
Biomechanics of the Knee-Extension Exercise. Effect of Cutting the Anterior Cruciate Ligament
,”
J. Bone Jt. Surg.
,
66
(
5
), pp.
725
734
.
76.
Reinbolt
,
J. A.
,
Haftka
,
R. T.
,
Chmielewski
,
T. L.
, and
Fregly
,
B. J.
,
2007
, “
Are Patient-Specific Joint and Inertial Parameters Necessary for Accurate Inverse Dynamics Analyses of Gait?
,”
IEEE Trans. Biomed. Eng.
,
54
(
5
), pp.
782
793
.10.1109/TBME.2006.889187
77.
Bergmann
,
G.
,
Graichen
,
F.
, and
Rohlmann
,
A.
,
1993
, “
Hip Joint Loading During Walking and Running, Measured in Two Patients
,”
J. Biomech.
,
26
(
8
), pp.
969
990
.10.1016/0021-9290(93)90058-M
78.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict In Vivo Knee Loads
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.10.1002/jor.22023
79.
Kim
,
H. J.
,
Fernandez
,
J. W.
,
Akbarshahi
,
M.
,
Walter
,
J. P.
,
Fregly
,
B. J.
, and
Pandy
,
M. G.
,
2009
, “
Evaluation of Predicted Knee-Joint Muscle Forces During Gait Using an Instrumented Knee Implant
,”
J. Orthop. Res.
,
27
(
10
), pp.
1326
1331
.10.1002/jor.20876
80.
Stansfield
,
B. W.
,
Nicol
,
A. C.
,
Paul
,
J. P.
,
Kelly
,
I. G.
,
Graichen
,
F.
, and
Bergmann
,
G.
,
2003
, “
Direct Comparison of Calculated Hip Joint Contact Forces With Those Measured Using Instrumented Implants. An Evaluation of a Three-Dimensional Mathematical Model of the Lower Limb
,”
J. Biomech.
,
36
(
7
), pp.
929
936
.10.1016/S0021-9290(03)00072-1
81.
Herzog
,
W.
, and
Read
,
L. J.
,
1993
, “
Lines of Action and Moment Arms of the Major Force-Carrying Structures Crossing the Human Knee Joint
,”
J. Anat.
,
182
(
2
), pp.
213
230
.
82.
Duda
,
G. N.
,
Brand
,
D.
,
Freitag
,
S.
,
Lierse
,
W.
, and
Schneider
,
E.
,
1996
, “
Variability of Femoral Muscle Attachments
,”
J. Biomech.
,
29
(
9
), pp.
1185
1190
.10.1016/0021-9290(96)00025-5
83.
Raikova
,
R. T.
, and
Prilutsky
,
B. I.
,
2001
, “
Sensitivity of Predicted Muscle Forces to Parameters of the Optimization-Based Human Leg Model Revealed by Analytical and Numerical Analyses
,”
J. Biomech.
,
34
(
10
), pp.
1243
1255
.10.1016/S0021-9290(01)00097-5
84.
Herzog
,
W.
,
1992
, “
Sensitivity of Muscle Force Estimations to Changes in Muscle Input Parameters Using Nonlinear Optimization Approaches
,”
ASME J. Biomech. Eng.
,
114
(
2
), pp.
267
268
.10.1115/1.2891382
85.
Ackland
,
D. C.
,
Lin
,
Y.-C.
, and
Pandy
,
M. G.
,
2012
, “
Sensitivity of Model Predictions of Muscle Function to Changes in Moment Arms and Muscle–Tendon Properties: A Monte-Carlo Analysis
,”
J. Biomech.
,
45
(
8
), pp.
1463
1471
.10.1016/j.jbiomech.2012.02.023
86.
Correa
,
T. A.
,
Baker
,
R.
,
Graham
,
H. K.
, and
Pandy
,
M. G.
,
2011
, “
Accuracy of Generic Musculoskeletal Models in Predicting the Functional Roles of Muscles in Human Gait
,”
J. Biomech.
,
44
(
11
), pp.
2096
2105
.10.1016/j.jbiomech.2011.05.023
87.
Xiao
,
M.
, and
Higginson
,
J. S.
,
2008
, “
Muscle Function May Depend on Model Selection in Forward Simulation of Normal Walking
,”
J. Biomech.
,
41
(
15
), pp.
3236
3242
.10.1016/j.jbiomech.2008.08.008
88.
Cleather
,
D. J.
, and
Bull
,
A. M. J.
,
2010
, “
Lower-Extremity Musculoskeletal Geometry Affects the Calculation of Patellofemoral Forces in Vertical Jumping and Weightlifting
,”
Proc. Inst. Mech. Eng., Part H
,
224
(
9
), pp.
1073
1083
.10.1243/09544119JEIM731
89.
Wang
,
J. M.
,
Hamner
,
S. R.
,
Delp
,
S. L.
, and
Koltun
,
V.
,
2012
, “
Optimizing Locomotion Controllers Using Biologically-Based Actuators and Objectives
,”
ACM Trans. Graphics
,
31
(
4
), pp.
1
11
.10.1145/2185520.2335376
90.
Miller
,
R. H.
,
Umberger
,
B. R.
,
Hamill
,
J.
, and
Caldwell
,
G. E.
,
2012
, “
Evaluation of the Minimum Energy Hypothesis and Other Potential Optimality Criteria for Human Running
,”
Proc. R. Soc. London B
,
279
(
1733
), pp.
1498
1505
.10.1098/rspb.2011.2015
91.
Handsfield
,
G. G.
,
Meyer
,
C. H.
,
Hart
,
J. M.
,
Abel
,
M. F.
, and
Blemker
,
S. S.
,
2014
, “
Relationships of 35 Lower Limb Muscles to Height and Body Mass Quantified Using MRI
,”
J. Biomech.
,
47
(
3
), pp.
631
638
.10.1016/j.jbiomech.2013.12.002
92.
Young
,
A.
,
Stokes
,
M.
, and
Crowe
,
M.
,
1984
, “
Size and Strength of the Quadriceps Muscles of Old and Young Women
,”
Eur. J. Clin. Invest.
,
14
(
4
), pp.
282
287
.10.1111/j.1365-2362.1984.tb01182.x
93.
Klein
,
C. S.
,
Rice
,
C. L.
, and
Marsh
,
G. D.
,
2001
, “
Normalized Force, Activation, and Coactivation in the Arm Muscles of Young and Old Men
,”
J. Appl. Physiol.
,
91
(
3
), pp.
1341
1349
.
94.
Morse
,
C. I.
,
Thom
,
J. M.
,
Birch
,
K. M.
, and
Narici
,
M. V.
,
2005
, “
Changes in Triceps Surae Muscle Architecture With Sarcopenia
,”
Acta Physiol. Scand.
,
183
(
3
), pp.
291
298
.10.1111/j.1365-201X.2004.01404.x
95.
Wickiewicz
,
T. L.
,
Roy
,
R. R.
,
Powell
,
P. L.
, and
Edgerton
,
V. R.
,
1983
, “
Muscle Architecture of the Human Lower Limb
,”
Clin. Orthop.
,
179
, pp.
275
283
.10.1097/00003086-198310000-00042
96.
Ward
,
S. R.
,
Eng
,
C. M.
,
Smallwood
,
L. H.
, and
Lieber
,
R. L.
,
2009
, “
Are Current Measurements of Lower Extremity Muscle Architecture Accurate?
,”
Clin. Orthop.
,
467
(
4
), pp.
1074
1082
.10.1007/s11999-008-0594-8
97.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.
98.
Millard
,
M.
,
Uchida
,
T.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2013
, “
Flexing Computational Muscle: Modeling and Simulation of Musculotendon Dynamics
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021005
.10.1115/1.4023390
99.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Static and Dynamic Optimization Solutions for Gait Are Practically Equivalent
,”
J. Biomech.
,
34
(
2
), pp.
153
161
.10.1016/S0021-9290(00)00155-X
100.
Miller
,
R. H.
,
Umberger
,
B. R.
, and
Caldwell
,
G. E.
,
2012
, “
Limitations to Maximum Sprinting Speed Imposed by Muscle Mechanical Properties
,”
J. Biomech.
,
45
(
6
), pp.
1092
1097
.10.1016/j.jbiomech.2011.04.040
101.
Azizi
,
E.
,
Brainerd
,
E. L.
, and
Roberts
,
T. J.
,
2008
, “
Variable Gearing in Pennate Muscles
,”
Proc. Natl. Acad. Sci. U. S. A.
,
105
(
5
), pp.
1745
1750
.10.1073/pnas.0709212105
102.
Herzog
,
W.
,
Lee
,
E. J.
, and
Rassier
,
D. E.
,
2006
, “
Residual Force Enhancement in Skeletal Muscle
,”
J. Physiol.
,
574
(
3
), pp.
635
642
.10.1113/jphysiol.2006.107748
103.
Rack
,
P. M. H.
, and
Westbury
,
D. R.
,
1974
, “
The Short Range Stiffness of Active Mammalian Muscle and Its Effect on Mechanical Properties
,”
J. Physiol.
,
240
(
2
), pp.
331
350
.
104.
Rassier
,
D. E.
,
MacIntosh
,
B. R.
, and
Herzog
,
W.
,
1999
, “
Length Dependence of Active Force Production in Skeletal Muscle
,”
J. Appl. Physiol.
,
86
(
5
), pp.
1445
1457
.
105.
Blemker
,
S. S.
,
Asakawa
,
D. S.
,
Gold
,
G. E.
, and
Delp
,
S. L.
,
2007
, “
Image-Based Musculoskeletal Modeling: Applications, Advances, and Future Opportunities
,”
J. Magn. Reson. Imaging
,
25
(
2
), pp.
441
451
.10.1002/jmri.20805
106.
Blemker
,
S. S.
, and
Delp
,
S. L.
,
2005
, “
Three-Dimensional Representation of Complex Muscle Architectures and Geometries
,”
Ann. Biomed. Eng.
,
33
(
5
), pp.
661
673
.10.1007/s10439-005-1433-7
107.
Krylow
,
A. M.
, and
Sandercock
,
T. G.
,
1997
, “
Dynamic Force Responses of Muscle Involving Eccentric Contraction
,”
J. Biomech.
,
30
(
1
), pp.
27
33
.10.1016/S0021-9290(96)00097-8
108.
Lichtwark
,
G. A.
,
Bougoulias
,
K.
, and
Wilson
,
A. M.
,
2007
, “
Muscle Fascicle and Series Elastic Element Length Changes Along the Length of the Human Gastrocnemius During Walking and Running
,”
J. Biomech.
,
40
(
1
), pp.
157
164
.10.1016/j.jbiomech.2005.10.035
109.
Scovil
,
C. Y.
, and
Ronsky
,
J. L.
,
2006
, “
Sensitivity of a Hill-Based Muscle Model to Perturbations in Model Parameters
,”
J. Biomech.
,
39
(
11
), pp.
2055
2063
.10.1016/j.jbiomech.2005.06.005
110.
Brand
,
R. A.
,
Pedersen
,
D. R.
, and
Friederich
,
J. A.
,
1986
, “
The Sensitivity of Muscle Force Predictions to Changes in Physiologic Cross-Sectional Area
,”
J. Biomech.
,
19
(
8
), pp.
589
596
.10.1016/0021-9290(86)90164-8
111.
DeMers
,
M. S.
,
Pal
,
S.
, and
Delp
,
S. L.
,
2014
, “
Changes in Tibiofemoral Forces due to Variations in Muscle Activity During Walking
,”
J. Orthop. Res.
,
32
(
6
), pp.
769
776
.10.1002/jor.22601
112.
Fukunaga
,
T.
,
Roy
,
R. R.
,
Shellock
,
F. G.
,
Hodgson
,
J. A.
, and
Edgerton
,
V. R.
,
1996
, “
Specific Tension of Human Plantar Flexors and Dorsiflexors
,”
J. Appl. Physiol.
,
80
(
1
), pp.
158
165
.
113.
Powell
,
P. L.
,
Roy
,
R. R.
,
Kanim
,
P.
,
Bello
,
M. A.
, and
Edgerton
,
V. R.
,
1984
, “
Predictability of Skeletal Muscle Tension From Architectural Determinations in Guinea Pig Hindlimbs
,”
J. Appl. Physiol.
,
57
(
6
), pp.
1715
1721
.
114.
Holzbaur
,
K. R. S.
,
Delp
,
S. L.
,
Gold
,
G. E.
, and
Murray
,
W. M.
,
2007
, “
Moment-Generating Capacity of Upper Limb Muscles in Healthy Adults
,”
J. Biomech.
,
40
(
11
), pp.
2442
2449
.10.1016/j.jbiomech.2006.11.013
115.
Vidt
,
M. E.
,
Daly
,
M.
,
Miller
,
M. E.
,
Davis
,
C. C.
,
Marsh
,
A. P.
, and
Saul
,
K. R.
,
2012
, “
Characterizing Upper Limb Muscle Volume and Strength in Older Adults: A Comparison With Young Adults
,”
J. Biomech.
,
45
(
2
), pp.
334
341
.10.1016/j.jbiomech.2011.10.007
116.
Correa
,
T. A.
, and
Pandy
,
M. G.
,
2011
, “
A Mass–Length Scaling Law for Modeling Muscle Strength in the Lower Limb
,”
J. Biomech.
,
44
(
16
), pp.
2782
2789
.10.1016/j.jbiomech.2011.08.024
117.
Redl
,
C.
,
Gfoehler
,
M.
, and
Pandy
,
M. G.
,
2007
, “
Sensitivity of Muscle Force Estimates to Variations in Muscle–Tendon Properties
,”
Hum. Mov. Sci.
,
26
(
2
), pp.
306
319
.10.1016/j.humov.2007.01.008
118.
De Groote
,
F.
,
Van Campen
,
A.
,
Jonkers
,
I.
, and
De Schutter
,
J.
,
2010
, “
Sensitivity of Dynamic Simulations of Gait and Dynamometer Experiments to Hill Muscle Model Parameters of Knee Flexors and Extensors
,”
J. Biomech.
,
43
(
10
), pp.
1876
1883
.10.1016/j.jbiomech.2010.03.022
119.
Xiao
,
M.
, and
Higginson
,
J.
,
2010
, “
Sensitivity of Estimated Muscle Force in Forward Simulation of Normal Walking
,”
J. Appl. Biomech.
,
26
(
2
), pp.
142
149
.
120.
Butler
,
D. L.
,
Grood
,
E. S.
,
Noyes
,
F. R.
,
Zernicke
,
R. F.
, and
Brackett
,
K.
,
1984
, “
Effects of Structure and Strain Measurement Technique on the Material Properties of Young Human Tendons and Fascia
,”
J. Biomech.
,
17
(
8
), pp.
579
596
.10.1016/0021-9290(84)90090-3
121.
Maganaris
,
C. N.
, and
Paul
,
J. P.
,
2002
, “
Tensile Properties of the In Vivo Human Gastrocnemius Tendon
,”
J. Biomech.
,
35
(
12
), pp.
1639
1646
.10.1016/S0021-9290(02)00240-3
122.
Maganaris
,
C. N.
, and
Paul
,
J. P.
,
1999
, “
In Vivo Human Tendon Mechanical Properties
,”
J. Physiol.
,
521
(
1
), pp.
307
313
.10.1111/j.1469-7793.1999.00307.x
123.
Bhargava
,
L. J.
,
Pandy
,
M. G.
, and
Anderson
,
F. C.
,
2004
, “
A Phenomenological Model for Estimating Metabolic Energy Consumption in Muscle Contraction
,”
J. Biomech.
,
37
(
1
), pp.
81
88
.10.1016/S0021-9290(03)00239-2
124.
Houdijk
,
H.
,
Bobbert
,
M. F.
, and
de Haan
,
A.
,
2006
, “
Evaluation of a Hill Based Muscle Model for the Energy Cost and Efficiency of Muscular Contraction
,”
J. Biomech.
,
39
(
3
), pp.
536
543
.10.1016/j.jbiomech.2004.11.033
125.
Lichtwark
,
G. A.
, and
Wilson
,
A. M.
,
2007
, “
Is Achilles Tendon Compliance Optimised for Maximum Muscle Efficiency During Locomotion?
,”
J. Biomech.
,
40
(
8
), pp.
1768
1775
.10.1016/j.jbiomech.2006.07.025
126.
Umberger
,
B. R.
,
Gerritsen
,
K. G. M.
, and
Martin
,
P. E.
,
2003
, “
A Model of Human Muscle Energy Expenditure
,”
Comput. Methods Biomech. Biomed. Eng.
,
6
(
2
), pp.
99
111
.10.1080/1025584031000091678
127.
Miller
,
R. H.
,
2014
, “
A Comparison of Muscle Energy Models for Simulating Human Walking in Three Dimensions
,”
J. Biomech.
,
47
(
6
), pp.
1373
1381
.10.1016/j.jbiomech.2014.01.049
128.
Lange
,
C.
,
Martin
,
E.
,
Piedbœuf
,
J.-C.
, and
Kövecses
,
J.
,
2002
, “
Towards Docking Emulation Using Hardware-in-the-Loop Simulation With Parallel Platforms
,”
Proceedings of Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators
,
C. M.
Gosselin
and
I.
Ebert-Uphoff
, eds., Quebec City, QC, Canada, pp.
1
4
.
129.
Fregly
,
B. J.
,
Bei
,
Y.
, and
Sylvester
,
M. E.
,
2003
, “
Experimental Evaluation of an Elastic Foundation Model to Predict Contact Pressures in Knee Replacements
,”
J. Biomech.
,
36
(
11
), pp.
1659
1668
.10.1016/S0021-9290(03)00176-3
130.
Neptune
,
R. R.
, and
Hull
,
M. L.
,
1998
, “
Evaluation of Performance Criteria for Simulation of Submaximal Steady-State Cycling Using a Forward Dynamic Model
,”
ASME J. Biomech. Eng.
,
120
(
3
), pp.
334
341
.10.1115/1.2797999
131.
Baraff
,
D.
,
1994
, “
Fast Contact Force Computation for Nonpenetrating Rigid Bodies
,”
Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques
-
SIGGRAPH
’94,
ACM Press
,
New York
, pp.
23
34
.10.1145/192161.192168
132.
Lloyd
,
D. G.
, and
Besier
,
T. F.
,
2003
, “
An EMG-Driven Musculoskeletal Model to Estimate Muscle Forces and Knee Joint Moments In Vivo
,”
J. Biomech.
,
36
(
6
), pp.
765
776
.10.1016/S0021-9290(03)00010-1
133.
Langenderfer
,
J.
,
LaScalza
,
S.
,
Mell
,
A.
,
Carpenter
,
J. E.
,
Kuhn
,
J. E.
, and
Hughes
,
R. E.
,
2005
, “
An EMG-Driven Model of the Upper Extremity and Estimation of Long Head Biceps Force
,”
Comput. Biol. Med.
,
35
(
1
), pp.
25
39
.10.1016/j.compbiomed.2003.12.002
134.
Ackermann
,
M.
, and
van den Bogert
,
A. J.
,
2010
, “
Optimality Principles for Model-Based Prediction of Human Gait
,”
J. Biomech.
,
43
(
6
), pp.
1055
1060
.10.1016/j.jbiomech.2009.12.012
135.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clin. Biomech.
,
22
(
2
), pp.
131
154
.10.1016/j.clinbiomech.2006.09.005
136.
van Werkhoven
,
H.
, and
Piazza
,
S. J.
,
2013
, “
Computational Model of Maximal-Height Single-Joint Jumping Predicts Bouncing as an Optimal Strategy
,”
J. Biomech.
,
46
(
6
), pp.
1092
1097
.10.1016/j.jbiomech.2013.01.016
137.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
1999
, “
A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions
,”
Comput. Methods Biomech. Biomed. Eng.
,
2
(
3
), pp.
201
231
.10.1080/10255849908907988
138.
Ashby
,
B. M.
, and
Delp
,
S. L.
,
2006
, “
Optimal Control Simulations Reveal Mechanisms by Which Arm Movement Improves Standing Long Jump Performance
,”
J. Biomech.
,
39
(
9
), pp.
1726
1734
.10.1016/j.jbiomech.2005.04.017
139.
Geyer
,
H.
, and
Herr
,
H.
,
2010
, “
A Muscle-Reflex Model That Encodes Principles of Legged Mechanics Produces Human Walking Dynamics and Muscle Activities
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
18
(
3
), pp.
263
273
.10.1109/TNSRE.2010.2047592
140.
Ting
,
L. H.
, and
Macpherson
,
J. M.
,
2005
, “
A Limited Set of Muscle Synergies for Force Control During a Postural Task
,”
J. Neurophysiol.
,
93
(
1
), pp.
609
613
.10.1152/jn.00681.2004
141.
d'Avella
,
A.
,
Saltiel
,
P.
, and
Bizzi
,
E.
,
2003
, “
Combinations of Muscle Synergies in the Construction of a Natural Motor Behavior
,”
Nat. Neurosci.
,
6
(
3
), pp.
300
308
.10.1038/nn1010
142.
Torres-Oviedo
,
G.
, and
Ting
,
L. H.
,
2010
, “
Subject-Specific Muscle Synergies in Human Balance Control Are Consistent Across Different Biomechanical Contexts
,”
J. Neurophysiol.
,
103
(
6
), pp.
3084
3098
.10.1152/jn.00960.2009
143.
Wakeling
,
J. M.
, and
Horn
,
T.
,
2009
, “
Neuromechanics of Muscle Synergies During Cycling
,”
J. Neurophysiol.
,
101
(
2
), pp.
843
854
.10.1152/jn.90679.2008
144.
Cheung
,
V. C. K.
,
Piron
,
L.
,
Agostini
,
M.
,
Silvoni
,
S.
,
Turolla
,
A.
, and
Bizzi
,
E.
,
2009
, “
Stability of Muscle Synergies for Voluntary Actions After Cortical Stroke in Humans
,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
46
), pp.
19563
19568
.10.1073/pnas.0910114106
145.
Dzeladini
,
F.
,
van den Kieboom
,
J.
, and
Ijspeert
,
A.
,
2014
, “
The Contribution of a Central Pattern Generator in a Reflex-Based Neuromuscular Model
,”
Front. Hum. Neurosci.
,
8
, p.
371
.10.3389/fnhum.2014.00371
146.
Seth
,
A.
, and
Pandy
,
M. G.
,
2007
, “
A Neuromusculoskeletal Tracking Method for Estimating Individual Muscle Forces in Human Movement
,”
J. Biomech.
,
40
(
2
), pp.
356
366
.10.1016/j.jbiomech.2005.12.017
147.
Clancy
,
E. A.
,
Morin
,
E. L.
, and
Merletti
,
R.
,
2002
, “
Sampling, Noise-Reduction and Amplitude Estimation Issues in Surface Electromyography
,”
J. Electromyogr. Kinesiol.
,
12
(
1
), pp.
1
16
.10.1016/S1050-6411(01)00033-5
148.
Corcos
,
D. M.
,
Gottlieb
,
G. L.
,
Latash
,
M. L.
,
Almeida
,
G. L.
, and
Agarwal
,
G. C.
,
1992
, “
Electromechanical Delay: An Experimental Artifact
,”
J. Electromyogr. Kinesiol.
,
2
(
2
), pp.
59
68
.10.1016/1050-6411(92)90017-D
149.
Silder
,
A.
,
Delp
,
S. L.
, and
Besier
,
T.
,
2013
, “
Men and Women Adopt Similar Walking Mechanics and Muscle Activation Patterns During Load Carriage
,”
J. Biomech.
,
46
(
14
), pp.
2522
2528
.10.1016/j.jbiomech.2013.06.020
150.
Gill
,
P. E.
,
Murray
,
W.
, and
Wright
,
M. H.
,
1982
,
Practical Optimization
,
Emerald Group Publishing
,
Bingley, UK
.
151.
Llewellyn
,
M. E.
,
Barretto
,
R. P. J.
,
Delp
,
S. L.
, and
Schnitzer
,
M. J.
,
2008
, “
Minimally Invasive High-Speed Imaging of Sarcomere Contractile Dynamics in Mice and Humans
,”
Nature
,
454
(
7205
), pp.
784
788
.10.1038/nature07104
152.
Farris
,
D. J.
, and
Sawicki
,
G. S.
,
2012
, “
Human Medial Gastrocnemius Force–Velocity Behavior Shifts With Locomotion Speed and Gait
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
3
), pp.
977
982
.10.1073/pnas.1107972109
153.
Rubenson
,
J.
,
Pires
,
N. J.
,
Loi
,
H. O.
,
Pinniger
,
G. J.
, and
Shannon
,
D. G.
,
2012
, “
On the Ascent: The Soleus Operating Length is Conserved to the Ascending Limb of the Force–Length Curve Across Gait Mechanics in Humans
,”
J. Exp. Biol.
,
215
(
20
), pp.
3539
3551
.10.1242/jeb.070466
You do not currently have access to this content.