Quantifying arterial residual deformations is critical for understanding the stresses and strains within the arterial wall during physiological and pathophysiological conditions. This study presents novel findings on residual shear deformations in the left anterior descending coronary artery. Residual shear deformations are most evident when thin, long axial strips are cut from the artery. These strips deform into helical configurations when placed in isotonic solution. A residual shear angle is introduced as a parameter to quantify the residual shear deformations. Furthermore, a stress analysis is performed to study the effects of residual shear deformations on the intramural shear stress distribution of an artery subjected to pressure, axial stretch, and torsion using numerical simulation. The results from the stress analyses suggest that residual shear deformations can significantly modulate the intramural shear stress across the arterial wall.

References

1.
Wang
,
R.
, and
Gleason
,
R. L.
,
2010
, “
A Mechanical Analysis of Conduit Arteries Accounting for Longitudinal Residual Strains
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1377
1387
.10.1007/s10439-010-9916-6
2.
Holzapfel
,
G. A.
et al.,
2007
, “
Layer-Specific 3D Residual Deformations of Human Aortas With Non-Atherosclerotic Intimal Thickening
,”
Ann. Biomed. Eng.
,
35
(
4
), pp.
530
545
.10.1007/s10439-006-9252-z
3.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2010
, “
Modelling the Layer-Specific Three-Dimensional Residual Stresses in Arteries, With an Application to the Human Aorta
,”
J. Roy. Soc. Interface
,
7
(
46
), pp.
787
799
.10.1098/rsif.2009.0357
4.
Pao
,
Y.
,
Lu
,
J.
, and
Ritman
,
E.
,
1992
, “
Bending and Twisting of an in vivo Coronary Artery at a Bifurcation
,”
J. Biomech.
,
25
(
3
), pp.
287
289
.10.1016/0021-9290(92)90026-W
5.
Puentes
,
J.
et al,
1998
, “
Dynamic Feature Extraction of Coronary Artery Motion Using DSA Image Sequences
,”
IEEE Trans. Med. Imaging
,
17
(
6
), pp.
857
871
.10.1109/42.746619
6.
Ding
,
Z.
, and
Friedman
,
M. H.
,
2000
, “
Quantification of 3-D Coronary Arterial Motion Using Clinical Biplane Cineangiograms
,”
Int. J. Cardiac Imaging
,
16
(
5
), pp.
331
346
.10.1023/A:1026590417177
7.
Ding
,
Z.
,
Zhu
,
H.
, and
Friedman
,
M. H.
,
2002
, “
Coronary Artery Dynamics in vivo
,”
Ann. Biomed. Eng.
,
30
(
4
), pp.
419
429
.10.1114/1.1467925
8.
Ding
,
Z.
, and
Friedman
,
M. H.
,
2000
, “
Dynamics of Human Coronary Arterial Motion and its Potential Role in Coronary Atherogenesis
,”
ASME J. Biomech. Eng.
,
122
(
5
), p.
488
.10.1115/1.1289989
9.
Omens
,
J. H.
,
Rockman
,
H. A.
, and
Covell
,
J. W.
,
1994
, “
Passive Ventricular Mechanics in Tight-Skin Mice
,”
Am. J. Physiol. Heart Circ. Physiol.
,
266
(
3
), pp.
H1169
H1176
.
10.
Guccione
,
J.
,
McCulloch
,
A.
, and
Waldman
,
L.
,
1991
, “
Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model
,”
ASME J. Biomech. Eng.
,
113
(
1
), p.
42
.10.1115/1.2894084
11.
Notomi
,
Y.
et al,
2005
, “
Measurement of Ventricular Torsion by Two-Dimensional Ultrasound Speckle Tracking Imaging
,”
J. Am. College Cardiol.
,
45
(
12
), pp.
2034
2041
.10.1016/j.jacc.2005.02.082
12.
Helle-Valle
,
T.
et al,
2005
, “
New Noninvasive Method for Assessment of Left Ventricular Rotation Speckle Tracking Echocardiography
,”
Circulation
,
112
(
20
), pp.
3149
3156
.10.1161/CIRCULATIONAHA.104.531558
13.
Humphrey
,
J.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer-Verlag
,
New York
.
14.
Wang
,
C.
et al,
2006
, “
Three-Dimensional Mechanical Properties of Porcine Coronary Arteries: A Validated Two-Layer Model
,”
Am. J. Physiol. Heart Circ. Physiol.
,
291
(
3
), p.
H1200
.10.1152/ajpheart.01323.2005
15.
Van Epps
,
J. S.
, and
Vorp
,
D. A.
,
2008
, “
A New Three-Dimensional Exponential Material Model of the Coronary Arterial Wall to Include Shear Stress Due to Torsion
,”
ASME J. Biomech. Eng.
,
130
, p.
051001
.10.1115/1.2948396
16.
Rachev
,
A.
, and
Greenwald
,
S.
,
2003
, “
Residual Strains in Conduit Arteries
,”
J. Biomech.
,
36
(
5
), pp.
661
670
.10.1016/S0021-9290(02)00444-X
17.
Hort
,
W.
et al,
1982
, “
The Size of Human Coronary Arteries Depending on the Physiological and Pathological Growth of the Heart the Age, the Size of the Supplying Areas and the Degree of Coronary Sclerosis
,”
Virchows Arch.
397
(
1
), pp.
37
59
.10.1007/BF00430892
18.
Timmins
,
L.
et al,
2010
, “
Structural Inhomogeneity and Fiber Orientation in the Inner Arterial Media
,”
Am. J. Physiol. Heart Circ. Physiol.
,
298
(
5
), pp.
H1537
H1545
.10.1152/ajpheart.00891.2009
19.
Nishimura
,
T.
, and
Ansell
,
M.
,
2002
, “
Fast Fourier Transform and Filtered Image Analyses of Fiber Orientation in OSB
,”
Wood Sci. Technol.
,
36
(
4
), pp.
287
307
.10.1007/s002260100114
20.
Wan
,
W.
,
Dixon
,
J.
, and
Gleason
,
R.
,
2012
, “
Constitutive Modeling of Mouse Carotid Arteries Using Experimentally Measured Microstructural Parameters
,”
Biophys. J.
,
102
(
12
), pp.
2916
2925
.10.1016/j.bpj.2012.04.035
21.
Carboni
,
M.
,
Desch
,
G. W.
, and
Weizsacker
,
H. W.
,
2007
, “
Passive Mechanical Properties of Porcine Left Circumflex Artery and Its Mathematical Description
,”
Med. Eng. Phys.
,
29
(
1
), pp.
8
16
.10.1016/j.medengphy.2006.01.004
22.
Rachev
,
A.
, and
Hayashi
,
K.
,
1999
, “
Theoretical Study of the Effects of Vascular Smooth Muscle Contraction on Strain and Stress Distributions in Arteries
,”
Ann. Biomed. Eng.
,
27
(
4
), pp.
459
468
.10.1114/1.191
You do not currently have access to this content.