The objective of this study is to develop a theoretical model to simulate temperature fields in a joint simulator for various bearing conditions using finite element analyses. The frictional heat generation rate at the interface between a moving pin and a stationary base is modeled as a boundary heat source. Both the heat source and the pin are rotating on the base. We are able to conduct a theoretical study to show the feasibility of using the COMSOL software package to simulate heat transfer in a domain with moving components and a moving boundary source term. The finite element model for temperature changes agrees in general trends with experimental data. Heat conduction occurs primarily in the highly conductive base component, and high temperature elevation is confined to the vicinity of the interface in the pin. Thirty rotations of a polyethylene pin on a cobalt-chrome base for 60 s generate more than 2.26 °C in the temperature elevation from its initial temperature of 25 °C at the interface in a baseline model with a rotation frequency of 0.5 Hz. A higher heat generation rate is the direct result of a faster rotation frequency associated with intensity of exercise, and it results in doubling the temperature elevations when the frequency is increased by100%. Temperature elevations of more than 7.5 °C occur at the interface when the friction force is tripled from that in the baseline model. The theoretical modeling approach developed in this study can be used in the future to test different materials, different material compositions, and different heat generation rates at the interface under various body and environmental conditions.

References

1.
Semlitsch
,
M.
, and
Willert
,
H. G.
,
1997
, “
Clinical Wear Behavior of Ultra-High Molecular Weight Polyethylene Cups Paired With Metal and Ceramic Ball Heads in Comparison to Metal-on-Metal Pairings of Hip Joint Replacements
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
211
, pp.
73
88
.10.1243/0954411971534700
2.
McKellop
,
H. A.
,
Campbell
,
P.
,
Park
,
S. H.
,
Chiesa
,
R.
,
Doorn
,
P.
,
Lu
,
B.
,
Normand
,
P.
,
Grigoris
,
P.
, and
Amstutz
,
H. A.
,
1995
, “
The Origin of Submicron Polyethylene Wear Debris In Total Hip-Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
311
, pp.
3
20
.
3.
Jacobs
,
J. J.
,
Hallab
,
N. J.
,
Urban
,
R. M.
, and
Wimmer
,
M. A.
,
2006
, “
Wear Particles
,”
J. Bone Jt. Surg.
,
88A
, pp.
99
102
.10.2106/JBJS.F.00102
4.
Capello
,
W. N.
,
D'Antonio
,
J. A.
,
Ramakrishnan
,
R.
, and
Naughton
,
M.
,
2011
, “
Continued Improved Wear With an Annealed Highly Cross-Linked Polyethylene
,”
Clin. Orthop. Relat. Res.
,
469
(
3
), pp.
825
830
.10.1007/s11999-010-1556-5
5.
Tateiwa
,
T.
,
Clarke
, I
. C.
,
Williams
,
P. A.
,
Garino
,
J.
,
Manaka
,
M.
,
Shishido
,
T.
,
Yamamoto
,
K.
, and
Imakiire
,
A.
,
2008
, “
Ceramic Total Hip Arthroplasty in the United States: Safety and Risk Issues Revisited
,”
Am. J. Orthop.
,
37
(
2
), pp.
E26
E31
.
6.
Wright
,
T. M.
,
Rimnac
,
C. M.
,
Faris
,
P. M.
, and
Bansal
,
M.
,
1988
, “
Analysis of Surface Damage in Retrieved Carbon Fiber-Reinforced and Plain Polyethylene Tibial Components From Posterior Stabilized Total Knee Replacements
,”
J. Bone Jt. Surg.
,
70
(
9
), pp.
1312
1319
.
7.
Bowsher
,
J. G.
, and
Shelton
,
J. C.
,
2001
, “
A Hip Simulator Study of the Influence of Patient Activity Level on the Wear of Cross Linked Polyethylene Under Smooth and Roughened Femoral Conditions
,”
Wear
,
250
, pp.
167
179
.10.1016/S0043-1648(01)00619-6
8.
Bergmann
,
G.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Verdonschot
,
N.
, and
van Lenthe
,
G. H.
,
2001
, “
Frictional Heating of Total Hip Implants, Part 1: Measurements in Patients
,”
J. Biomech.
,
34
, pp.
421
428
.10.1016/S0021-9290(00)00188-3
9.
Bergmann
,
G.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Verdonschot
,
N.
, and
van Lenthe
,
G. H.
,
2001
, “
Frictional Heating of Total Hip Implants, Part 2: Finite Element Study
,”
J. Biomech.
,
34
, pp.
429
435
.10.1016/S0021-9290(00)00234-7
10.
James
,
W.
,
2001
, “
Pritchett Heat Generated by Hip Resurfacing Prostheses: An in vivo Pilot Study
,”
J. Long Term Eff. Med. Implants
,
21
(
1
), pp.
55
62
.
11.
Tsai
,
S.
,
Salehi
,
A.
,
Aldinger
,
P.
, and
Hunter
,
G.
,
2006
, “
Heat Generation and Dissipation Behavior of Various Orthopaedic Bearing Materials
,”
Key Eng. Mater.
,
309
, pp.
1281
1284
.10.4028/www.scientific.net/KEM.309-311.1281
12.
Lu
,
Z.
, and
McKellop
,
H.
,
1997
, “
Frictional Heating of Bearing Materials Tested in a Hip Joint Wear Simulator
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
211
(
1
), pp.
101
108
.10.1243/0954411971534728
13.
Baykal
,
D.
,
Rau
,
A. C.
,
Underwood
,
R. J.
,
Siskey
,
R. S.
, and
Kurtz
,
S. M.
,
2013
, “
Frictional Heating of PEEK-UHMWPE Bearing Couple on Pin-on-Disk Tester
,”
Transactions of the 1st International PEEK Meeting
, Philadelphia, PA, April 25–26.
14.
Liao
,
Y. S.
,
Benya
,
P. D.
, and
McKellop
,
H. A.
,
1999
, “
Effect of Protein Lubrication on the Wear Properties of Materials for Prosthetic Joints
,”
J. Biomed. Mater. Res.
,
48
(
4
), pp.
465
473
.10.1002/(SICI)1097-4636(1999)48:4<465::AID-JBM10>3.0.CO;2-Y
15.
Bowsher
,
J. G.
, and
Clarke
, I
. C.
,
2007
, “
Thermal Conductivity of Femoral Ball Strongly Influenced UHMWPE Wear in a Hip Simulator Study
,”
Transactions of the 53rd Annual Meeting of the Orthopaedic Research Society
, San Diego, CA, Feb. 11–14, 2007, Paper No. 0278.
16.
Liao
,
Y. S.
,
McKellop
,
H.
,
Lu
,
Z.
,
Campbellb
,
P.
, and
Benyaa
,
P.
,
2003
, “
Effect of Frictional Heating on the Serum Lubricant and Wear of UHMWPE Cups Against Cobalt-Chrome or Zirconia Balls
,”
Biomaterials
,
24
(
18
), pp.
3047
3059
.10.1016/S0142-9612(03)00148-0
17.
Liao
,
Y. S.
,
Hames
,
M.
,
Fryman
,
J. C.
, and
DiSilvestro
,
M.
,
2005
, “
Phase Stability of Zirconia and Alumina/Zirconia Composite Heads Against UHMWPE Liners in a Temperature-Controlled Hip Simulation Study
,”
Key Eng. Mater.
,
284
, pp.
991
994
.10.4028/www.scientific.net/KEM.284-286.991
18.
McKellop
,
H. A.
, and
D'Lima
,
D.
,
2008
, “
How Have Wear Testing and Joint Simulator Studies Helped to Discriminate Among Materials and Designs?
,”
J. Am. Acad. Orthop. Surg.
,
16
, pp.
S111
S119
.
19.
Bowsher
,
J. G.
,
Williams
,
P. A.
,
Clarke
, I
. C.
,
Green
,
D. D.
, and
Donaldson
,
T. K.
,
2008
, “
Severe Wear Challenge to 36 mm Mechanically Enhanced Highly Crosslinked Polyethylene Hip Liners
,”
J. Biomed. Mater. Res. Part B: Appl. Biomater.
,
86B
, pp.
253
263
.10.1002/jbm.b.31013
20.
Bowsher
,
J. G.
, and
Shelton
,
J. C.
,
2000
, “
The Influence of Stumbling on the Wear of Ultra-High Molecular Weight Polyethylene
,”
Proceedings of the 6th World Biomaterials Congress Transactions
, Vol.
2
, pp.
867
.
21.
Bigsby
,
R. J. A.
,
Hardaker
,
C. S.
, and
Fisher
,
J.
,
1997
, “
Wear of Ultra-high Molecular Weight Polyethylene Acetabular Cups in a Physiological Hip Joint Simulator in the Anatomical Position Using Bovine Serum as a Lubricant
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
211
, pp.
265
269
.10.1243/0954411971534377
22.
Clarke
,
I. C.
,
Good
,
V.
,
Anissian
,
L.
, and
Gustafson
,
A.
,
1997
, “
Charnley Wear Model for Validation of Hip Simulators: Ball Diameter Versus Polytetrafluoroethylene and Polyethylene Wear
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
211
, pp.
25
36
.10.1243/0954411971534656
23.
Saikko
,
V.
, and
Ahlroos
,
T.
,
1999
, “
Type of Motion and Lubricant in Wear Simulation of Polyethylene Acetabular Cup
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
213
, pp.
301
310
.10.1243/0954411991535130
24.
Fialho
,
J. C.
,
Fernandes
,
P. R.
,
Eça
,
L.
, and
Folgado
,
J.
,
2007
, “
Computational Hip Joint Simulator for Wear and Heat Generation
,”
J. Biomech.
,
40
(
11
), pp.
2358
2366
.10.1016/j.jbiomech.2006.12.005
25.
Hu
,
C. C.
,
Liau
,
J. J.
,
Lung
,
C. Y.
,
Huang
,
C. H.
, and
Cheng
,
C. K.
,
2001
, “
A Two Dimensional Finite Element Model for Frictional Heating Analysis of Total Hip Prosthesis
,”
Mater. Sci. Eng.
, C,
7
, pp.
11
18
.10.1016/S0928-4931(01)00328-9
26.
Rocchi
,
M.
,
Affatato
,
S.
,
Falasca
,
G.
, and
Viciconti
,
M.
,
2007
, “
Thermomechanical Analysis of Ultra-High Molecular Weight Polyethylene-Metal Hip Prostheses
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
221
(
6
), pp.
561
568
.10.1243/09544119JEIM137
27.
Smith
,
K. D.
,
2010
, “
Theoretical and Experimental Evaluation of a Simple Cooling Pad for Inducing Hypothermia in the Brain and in the Spinal Cord Following Traumatic Spinal Cord Injury
,” Ph.D. thesis, University of Maryland Baltimore County, Baltimore, MD.
28.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
, “
Fundamental of Heat and Mass Transfer
,” 7th ed.,
Wiley
,
New York
.
29.
Chamani
,
A.
,
Mehta
,
H. P.
,
McDermott
,
M. K.
,
Attaluri
,
A.
,
Zhang
,
T.
,
Jammula
,
S.
,
Topoleski
,
L. D. T.
, and
Zhu
,
L.
,
2013
, “
Theoretical Simulation of Temperature Elevations in a Joint Wear Simulator during Rations
,”
Proceedings of the ASME 2013 Summer Bioengineering Conference
, June, Sunriver, OR, Paper No. SBC2013-14173.
You do not currently have access to this content.