Agent-based modeling was used to model collagen fibrils, composed of a string of nodes serially connected by links that act as Hookean springs. Bending mechanics are implemented as torsional springs that act upon each set of three serially connected nodes as a linear function of angular deflection about the central node. These fibrils were evaluated under conditions that simulated axial extension, simple three-point bending and an end-loaded cantilever. The deformation of fibrils under axial loading varied <0.001% from the analytical solution for linearly elastic fibrils. For fibrils between 100 μm and 200 μm in length experiencing small deflections, differences between simulated deflections and their analytical solutions were <1% for fibrils experiencing three-point bending and <7% for fibrils experiencing cantilever bending. When these new rules for fibril mechanics were introduced into a model that allowed for cross-linking of fibrils to form a network and the application of cell traction force, the fibrous network underwent macroscopic compaction and aligned between cells. Further, fibril density increased between cells to a greater extent than that observed macroscopically and appeared similar to matrical tracks that have been observed experimentally in cell-populated collagen gels. This behavior is consistent with observations in previous versions of the model that did not allow for the physically realistic simulation of fibril mechanics. The significance of the torsional spring constant value was then explored to determine its impact on remodeling of the simulated fibrous network. Although a stronger torsional spring constant reduced the degree of quantitative remodeling that occurred, the inclusion of torsional springs in the model was not necessary for the model to reproduce key qualitative aspects of remodeling, indicating that the presence of Hookean springs is essential for this behavior. These results suggest that traction force mediated matrix remodeling may be a robust phenomenon not limited to fibrils with a precise set of material properties.

References

1.
McLennan
,
R.
,
Dyson
,
L.
,
Prather
,
K. W.
,
Morrison
,
J. A.
,
Baker
,
R. E.
,
Maini
,
P. K.
, and
Kulesa
,
P. M.
,
2012
, “
Multiscale Mechanisms of Cell Migration During Development: Theory and Experiment
,”
Development
,
139
(
16
), pp.
2935
2944
.10.1242/dev.081471
2.
Morales
,
T. I.
,
2007
, “
Chondrocyte moves: Clever Strategies?
,”
Osteoarth. Cart.
,
15
(
8
), pp.
861
871
.10.1016/j.joca.2007.02.022
3.
Phan
,
S. H.
,
2012
, “
Genesis of the Myofibroblast in Lung Injury and Fibrosis
,”
Proc. Am. Thorac. Soc.
,
9
(
3
), pp.
148
152
.10.1513/pats.201201-011AW
4.
Grinnell
,
F.
,
1994
, “
Fibroblasts, Myofibroblasts, and Wound Contraction
,”
J. Cell Biol.
,
124
(
4
), pp.
401
404
.10.1083/jcb.124.4.401
5.
Bell
,
E.
,
Ehrlich
,
H. P.
,
Buttle
,
D. J.
, and
Nakatsuji
,
T.
,
1981
, “
Living Tissue Formed In Vitro and Accepted as Skin-Equivalent Tissue of Full Thickness
,”
Science
,
211
(
4486
), pp.
1052
1054
.10.1126/science.7008197
6.
Weinberg
,
C. B.
, and
Bell
,
E.
,
1986
, “
A Blood Vessel Model Constructed From Collagen and Cultured Vascular Cells
,”
Sci. New Ser.
,
231
(
4736
), pp.
397
400
.10.1126/science.2934816
7.
Stevenson
,
M. D.
,
Sieminski
,
A. L.
,
McLeod
,
C. M.
,
Byfield
,
F. J.
,
Barocas
,
V. H.
, and
Gooch
,
K. J.
,
2010
, “
Pericellular Conditions Regulate Extent of Cell-Mediated Compaction of Collagen Gels
,”
Biophys. J.
,
99
(
1
), pp.
19
28
.10.1016/j.bpj.2010.03.041
8.
Kim
,
A.
,
Lakshman
,
N.
, and
Petroll
,
W. M.
,
2006
, “
Quantitative Assessment of Local Collagen Matrix Remodeling in 3-D Culture: The Role of Rho Kinase
,”
Exp. Cell Res.
,
312
(
18
), pp.
3683
3692
.10.1016/j.yexcr.2006.08.009
9.
Moulin
,
V.
,
Castilloux
,
G.
,
Jean
,
A.
,
Garrel
,
D. R.
,
Auger
,
F. A.
, and
Germain
,
L.
,
1996
, “
In Vitro Models to Study Wound Healing Fibroblasts
,”
Burns
,
22
(
5
), pp.
359
362
.10.1016/0305-4179(95)00167-0
10.
Tranquillo
,
R. T.
,
Durrani
,
M. A.
, and
Moon
,
A. G.
,
1992
, “
Tissue Engineering Science: Consequences of Cell Traction Force
,”
Cytotechnology
,
10
(
3
), pp.
225
250
.10.1007/BF00146673
11.
Sander
,
L. M.
,
2013
, “
Alignment Localization in Nonlinear Biological Media
,”
ASME J. Biomech. Eng.
,
135
(
7
), p.
071006
.10.1115/1.4024199
12.
Aghvami
,
M.
,
Barocas
,
V. H.
, and
Sander
,
E. A.
,
2013
, “
Multiscale Mechanical Simulations of Cell Compacted Collagen Gels
,”
ASME J. Biomech. Eng.
,
135
(
7
), p.
071004
.10.1115/1.4024460
13.
Reinhardt
,
J. W.
,
Krakauer
,
D. A.
, and
Gooch
,
K. J.
,
2013
, “
Complex Matrix Remodeling and Durotaxis Can Emerge From Simple Rules for Cell-Matrix Interaction in Agent-Based Models
,”
ASME J. Biomech. Eng.
,
135
(
7
), pp.
071003
.10.1115/1.4024463
14.
Thomas
,
M. J.
, and
Fruchterman
,
E.
,
1991
, “
Graph Drawing by Force-Directed Placement
,”
Software-Practice Exp.
,
21
(
11
), pp.
1129
1164
.10.1002/spe.4380211102
15.
Sasaki
,
N.
, and
Odajima
,
S.
,
1996
, “
Stress-Strain Curve and Young's Modulus of a Collagen Molecule as Determined by the X-ray Diffraction Technique
,”
J. Biomech.
,
29
(
5
), pp.
655
658
.10.1016/0021-9290(95)00110-7
16.
Shen
,
Z. L.
,
Dodge
,
M. R.
,
Kahn
,
H.
,
Ballarini
,
R.
, and
Eppell
,
S. J.
,
2008
, “
Stress-Strain Experiments on Individual Collagen Fibrils
,”
Biophys. J
,
95
(
8
), pp.
3956
3963
.10.1529/biophysj.107.124602
17.
Stein
,
A. M.
,
Vader
,
D. A.
,
Jawerth
L. M.
,
Weitz
,
D. A.
, and
Sander
,
L. M.
,
2008
, “
An Algorithm for Extracting the Network Geometry of Three-Dimensional Collagen Gels
,”
J. Microsc.
,
232
(
3
), pp.
463
475
.10.1111/j.1365-2818.2008.02141.x
18.
Wilensky
,
U.
,
1999
, “
NetLogo.
” Available at: http://ccl.northwestern.edu/netlogo/, Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.
19.
Svensson
,
R. B.
,
Hassenkam
,
T.
,
Hansen
,
P.
, and
Peter Magnusson
,
S.
,
2010
, “
Viscoelastic Behavior of Discrete Human Collagen Fibrils
,”
J. Mech. Behav. Biomed. Mater.
,
3
(
1
), pp.
112
115
.10.1016/j.jmbbm.2009.01.005
20.
Yamato
,
M.
,
Adachi
,
E.
,
Yamamoto
,
K.
, and
Hayashi
,
T.
,
1995
, “
Condensation of Collagen Fibrils to the Direct Vicinity of Fibroblasts as a Cause of Gel Contraction
,”
J. Biochem.
,
117
(
5
), pp.
940
946
.
21.
Mcleod
,
C.
,
Higgins
,
J.
,
Miroshnikova
,
Y.
,
Liu
,
R.
,
Garrett
,
A.
, and
Sarang-Sieminski
,
A.
,
2013
, “
Microscopic Matrix Remodeling Precedes Endothelial Morphological Changes During Capillary Morphogenesis
,”
ASME J. Biomech. Eng.
,
135
(
7
), p.
071002
.10.1115/1.4023984
22.
Vernon
,
R. B.
, and
Sage
,
E. H.
,
1995
, “
Between Molecules and Morphology
,”
Am. J. Pathol.
,
147
(
4
), pp.
873
883
.
23.
Davis
,
G. E.
, and
Camarillo
,
C. W.
,
1995
, “
Regulation of Endothelial Cell Morphogenesis by Integrins, Mechanical Forces, and Matrix Guidance Pathways
,”
Exp. Cell Res.
,
216
, pp.
113
123
.10.1006/excr.1995.1015
24.
Raub
,
C. B.
,
Suresh
, V
.
,
Krasieva
,
T.
,
Lyubovitsky
,
J.
,
Mih
,
J. D.
,
Putnam
,
A. J.
,
Tromberg
,
B. J.
, and
George
,
S. C.
,
2007
, “
Noninvasive Assessment of Collagen Gel Microstructure and Mechanics Using Multiphoton Microscopy
,”
Biophys. J.
,
92
(
6
), pp.
2212
2222
.10.1529/biophysj.106.097998
25.
Sieminski
,
A. L.
,
Semino
,
C. E.
,
Gong
,
H.
, and
Kamm
,
R. D.
,
2008
, “
Primary Sequence of Ionic Self-Assembling Peptide Gels Affects Endothelial Cell adhesion and Capillary Morphogenesis
,”
J. Biomed. Mater. Res. A
,
87
(
2
), pp.
494
504
.10.1002/jbm.a.31785
26.
Van der Rijt
,
J. A. J.
,
van der Werf
,
K. O.
,
Bennink
,
M. L.
,
Dijkstra
,
P. J.
, and
Feijen
,
J.
,
2006
, “
Micromechanical Testing of Individual Collagen Fibrils
,”
Macromol. Biosci.
,
6
(
9
), pp.
697
702
.10.1002/mabi.200600063
27.
Cavalcante
,
F. S. A.
,
Ito
,
S.
,
Brewer
,
K.
,
Sakai
,
H.
,
Alencar
,
A. M.
,
Almeida
,
M. P.
,
Andrade
,
J. S.
,
Majumdar
,
A.
,
Ingenito
,
E. P.
, and
Suki
,
B.
,
2005
, “
Mechanical Interactions Between Collagen and Proteoglycans: Implications for the Stability of Lung Tissue
,”
J. Appl. Physiol.
,
98
(
2
), pp.
672
679
.10.1152/japplphysiol.00619.2004
You do not currently have access to this content.