Understanding the mechanical properties of human femora is of great importance for the development of a reliable fracture criterion aimed at assessing fracture risk. Earlier ex vivo studies have been conducted by measuring strains on a limited set of locations using strain gauges (SGs). Digital image correlation (DIC) could instead be used to reconstruct the full-field strain pattern over the surface of the femur. The objective of this study was to measure the full-field strain response of cadaver femora tested at a physiological strain rate up to fracture in a configuration resembling single stance. The three cadaver femora were cleaned from soft tissues, and a white background paint was applied with a random black speckle pattern over the anterior surface. The mechanical tests were conducted up to fracture at a constant displacement rate of 15 mm/s, and two cameras recorded the event at 3000 frames per second. DIC was performed to retrieve the full-field displacement map, from which strains were derived. A low-pass filter was applied over the measured displacements before the crack opened in order to reduce the noise level. The noise levels were assessed using a dedicated control plate. Conversely, no filtering was applied at the frames close to fracture to get the maximum resolution. The specimens showed a linear behavior of the principal strains with respect to the applied force up to fracture. The strain rate was comparable to the values available in literature from in vivo measurements during daily activities. The cracks opened and fully propagated in less than 1 ms, and small regions with high values of the major principal strains could be spotted just a few frames before the crack opened. This corroborates the hypothesis of a strain-driven fracture mechanism in human bone. The data represent a comprehensive collection of full-field strains, both at physiological load levels and up to fracture. About 10,000 points were tracked on each bone, providing superior spatial resolution compared to ∼15 measurements typically collected using SGs. These experimental data collection can be further used for validation of numerical models, and for experimental verification of bone constitutive laws and fracture criteria.

References

1.
Brauer
,
C. A.
,
Coca-Perraillon
,
M.
,
Cutler
,
D. M.
, and
Rosen
,
A. B.
,
2009
, “
Incidence and Mortality of Hip Fractures in the United States
,”
JAMA
,
302
(
14
), pp.
1573
1579
.10.1001/jama.2009.1462
2.
Meling
,
T.
,
Harboe
,
K.
, and
Søreide
,
K.
,
2009
, “
Incidence of Traumatic Long-Bone Fractures Requiring In-Hospital Management: A Prospective Age- and Gender-Specific Analysis of 4890 Fractures
,”
Injury
,
40
(
11
), pp.
1212
1219
.10.1016/j.injury.2009.06.003
3.
Cauley
,
J. A.
,
2013
, “
Public Health Impact of Osteoporosis
,”
J. Gerontol., Ser. A
,
68
(
10
), pp.
1243
1251
.10.1093/gerona/glt093
4.
Roth
,
T.
,
Kammerlander
,
C.
,
Gosch
,
M.
,
Luger
,
T. J.
, and
Blauth
,
M.
,
2010
, “
Outcome in Geriatric Fracture Patients and How It Can be Improved
,”
Osteoporos. Int.
,
21
(
Suppl 4
), pp.
S615
S619
.10.1007/s00198-010-1401-4
5.
Kanis
,
J. A.
,
Borgstrom
,
F.
,
De Laet
,
C.
,
Johansson
,
H.
,
Johnell
,
O.
,
Jonsson
,
B.
,
Oden
,
A.
,
Zethraeus
,
N.
,
Pfleger
,
B.
, and
Khaltaev
,
N.
,
2005
, “
Assessment of Fracture Risk
,”
Osteoporos. Int.
,
16
(
6
), pp.
581
589
.10.1007/s00198-004-1780-5
6.
Silverman
,
S. L.
, and
Calderon
,
A. D.
,
2010
, “
The Utility and Limitations of FRAX: A US Perspective
,”
Curr. Osteoporos. Rep.
,
8
(
4
), pp.
192
197
.10.1007/s11914-010-0032-1
7.
Lekamwasam
,
S.
,
2010
, “
Application of FRAX Model to Sri Lankan Postmenopausal Women
,”
J. Clin. Densitom.
,
13
(
1
), pp.
51
55
.10.1016/j.jocd.2009.09.001
8.
Amin
,
S.
,
Kopperdhal
,
D. L.
,
Melton
,
L. J.
,
Achenbach
,
S. J.
,
Therneau
,
T. M.
,
Riggs
,
B. L.
,
Keaveny
,
T. M.
, and
Khosla
,
S.
,
2011
, “
Association of Hip Strength Estimates by Finite-Element Analysis With Fractures in Women and Men
,”
J. Bone Miner. Res.
,
26
(
7
), pp.
1593
1600
.10.1002/jbmr.347
9.
Szulc
,
P.
,
Duboeuf
,
F.
,
Schott
,
A. M.
,
Dargent-Molina
,
P.
,
Meunier
,
P. J.
, and
Delmas
,
P. D.
,
2006
, “
Structural Determinants of Hip Fracture in Elderly Women: Re-Analysis of the Data From the EPIDOS Study
,”
Osteoporos. Int.
,
17
(
2
), pp.
231
236
.10.1007/s00198-005-1980-7
10.
Currey
,
J.
,
2009
, “
Measurement of the Mechanical Properties of Bone: A Recent History
,”
Clin. Orthop. Relat. Res.
,
467
(
8
), pp.
1948
1954
.10.1007/s11999-009-0784-z
11.
Juszczyk
,
M. M.
,
Cristofolini
,
L.
, and
Viceconti
,
M.
,
2011
, “
The Human Proximal Femur Behaves Linearly Elastic Up to Failure Under Physiological Loading Conditions
,”
J. Biomech.
,
44
(
12
), pp.
2259
2266
.10.1016/j.jbiomech.2011.05.038
12.
Cristofolini
,
L.
,
Schileo
,
E.
,
Juszczyk
,
M.
,
Taddei
,
F.
,
Martelli
,
S.
, and
Viceconti
,
M.
,
2010
, “
Mechanical Testing of Bones: The Positive Synergy of Finite-Element Models and in vitro Experiments
,”
Philos. Trans. R. Soc., A
,
368
(
1920
), pp.
2725
2763
.10.1098/rsta.2010.0046
13.
Lochmüller
,
E. M.
,
Groll
,
O.
,
Kuhn
,
V.
, and
Eckstein
,
F.
,
2002
, “
Mechanical Strength of the Proximal Femur as Predicted From Geometric and Densitometric Bone Properties at the Lower Limb Versus the Distal Radius
,”
Bone
,
30
(
1
), pp.
207
216
.10.1016/S8756-3282(01)00621-4
14.
Cristofolini
,
L.
,
Conti
,
G.
,
Juszczyk
,
M.
,
Cremonini
,
S.
,
Van Sint Jan
,
S.
, and
Viceconti
,
M.
,
2010
, “
Structural Behaviour and Strain Distribution of the Long Bones of the Human Lower Limbs
,”
J. Biomech.
,
43
(
5
), pp.
826
835
.10.1016/j.jbiomech.2009.11.022
15.
Sutton
,
M. A.
,
Orteu
,
J. J.
, and
Schreier
,
H.
,
2009
,
Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications
,
Springer
,
New York
.
16.
Dickinson
,
A. S.
,
Taylor
,
A. C.
,
Ozturk
,
H.
, and
Browne
,
M.
,
2011
, “
Experimental Validation of a Finite Element Model of the Proximal Femur Using Digital Image Correlation and a Composite Bone Model
,”
ASME J. Biomech. Eng.
,
133
(
1
), p.
014504
.10.1115/1.4003129
17.
Op Den Buijs
,
J.
, and
Dragomir-Daescu
,
D.
,
2011
, “
Validated Finite Element Models of the Proximal Femur Using Two-Dimensional Projected Geometry and Bone Density
,”
Comput. Methods Programs Biomed.
,
104
(
2
), pp.
168
174
.10.1016/j.cmpb.2010.11.008
18.
Gilchrist
,
S.
,
Guy
,
P.
, and
Cripton
,
P. A
,
2013
, “
Development of an Inertia-Driven Model of Sideways Fall for Detailed Study of Femur Fracture Mechanics
,”
ASME J. Biomech. Eng.
,
135
(
12
), p.
121001
.10.1115/1.4025390
19.
Väänänen
,
S. P.
,
Amin Yavari
,
S.
,
Weinans
,
H.
,
Zadpoor
,
A. A.
,
Jurvelin
,
J. S.
, and
Isaksson
,
H.
,
2013
, “
Repeatability of Digital Image Correlation for Measurement of Surface Strains in Composite Long Bones
,”
J. Biomech.
,
46
(
11
), pp.
1928
1932
.10.1016/j.jbiomech.2013.05.021
20.
Amin Yavari
,
S.
,
van der Stok
,
J.
,
Weinans
,
H.
, and
Zadpoor
,
A. A.
,
2013
, “
Full-Field Strain Measurement and Fracture Analysis of Rat Femora in Compression Test
,”
J. Biomech.
,
46
(
7
), pp.
1282
1292
.10.1016/j.jbiomech.2013.02.007
21.
Cristofolini
,
L.
,
Juszczyk
,
M.
,
Taddei
,
F.
, and
Viceconti
,
M.
,
2009
, “
Strain Distribution in the Proximal Human Femoral Metaphysis
,”
Proc. Inst. Mech. Eng. H
,
223
(
3
), pp.
273
288
.10.1243/09544119JEIM497
22.
Viceconti
,
M.
,
Taddei
,
F.
,
Montanari
,
L.
,
Testi
,
D.
,
Leardini
,
A.
,
Clapworthy
,
G.
, and
Van Sint Jan
,
S.
,
2007
, “
Multimod Data Manager: A Tool for Data Fusion
,”
Comput. Methods Programs Biomed.
,
87
(
2
), pp.
148
159
.10.1016/j.cmpb.2007.05.002
23.
Bornert
,
M.
,
Brémand
,
F.
,
Doumalin
,
P.
,
Dupré
,
J.-C.
,
Fazzini
,
M.
,
Grédiac
,
M.
,
Hild
,
F.
,
Mistou
,
S.
,
Molimard
,
J.
,
Orteu
,
J.-J.
,
Robert
,
L.
,
Surrel
,
Y.
,
Vacher
,
P.
, and
Wattrisse
,
B.
,
2008
, “
Assessment of Digital Image Correlation Measurement Errors: Methodology and Results
,”
Exp. Mech.
,
49
(
3
), pp.
353
370
.10.1007/s11340-008-9204-7
24.
Burr
,
D. B.
,
Milgrom
,
C.
,
Fyhrie
,
D.
,
Forwood
,
M.
,
Nyska
,
M.
,
Finestone
,
A.
,
Hoshaw
,
S.
,
Saiag
,
E.
, and
Simkin
,
A.
,
1996
, “
In Vivo Measurement of Human Tibial Strains During Vigorous Activity
,”
Bone
,
18
(
5
), pp.
405
410
.10.1016/8756-3282(96)00028-2
25.
Al Nazer
,
R.
,
Lanovaz
,
J.
,
Kawalilak
,
C.
,
Johnston
,
J. D.
, and
Kontulainen
,
S.
,
2012
, “
Direct In Vivo Strain Measurements in Human Bone—A Systematic Literature Review
,”
J. Biomech.
,
45
(
1
), pp.
27
40
.10.1016/j.jbiomech.2011.08.004
26.
Wolff
,
J.
,
1986
,
The Law of Bone Remodeling
(Translation of the German 1892 ed.),
Springer
,
Berlin, Germany
.
27.
Kersh
,
M. E.
,
Zysset
,
P. K.
,
Pahr
,
D. H.
,
Wolfram
,
U.
,
Larsson
,
D.
, and
Pandy
,
M. G.
,
2013
, “
Measurement of Structural Anisotropy in Femoral Trabecular Bone Using Clinical-Resolution CT Images
,”
J. Biomech.
,
46
(
15
), pp.
2659
2666
.10.1016/j.jbiomech.2013.07.047
28.
San Antonio
,
T.
,
Ciaccia
,
M.
,
Müller-Karger
,
C.
, and
Casanova
,
E.
,
2012
, “
Orientation of Orthotropic Material Properties in a Femur FE Model: A Method Based on the Principal Stresses Directions
,”
Med. Eng. Phys.
,
34
(
7
), pp.
914
919
.10.1016/j.medengphy.2011.10.008
29.
Schileo
,
E.
,
Taddei
,
F.
,
Cristofolini
,
L.
, and
Viceconti
,
M.
,
2008
, “
Subject-Specific Finite Element Models Implementing a Maximum Principal Strain Criterion are Able to Estimate Failure Risk and Fracture Location on Human Femurs Tested In Vitro
,”
J. Biomech.
,
41
(
2
), pp.
356
367
.10.1016/j.jbiomech.2007.09.009
30.
Perry
,
C. C.
,
1986
, “
Strain-Gage Reinforcement Effects on Orthotropic Materials
,”
Exp. Tech.
,
10
(
2
), pp.
20
24
.
31.
Malo
,
M. K. H.
,
Rohrbach
,
D.
,
Isaksson
,
H.
,
Töyräs
,
J.
,
Jurvelin
,
J. S.
,
Tamminen
,
I. S.
,
Kröger
,
H.
, and
Raum
,
K.
,
2013
, “
Longitudinal Elastic Properties and Porosity of Cortical Bone Tissue Vary With Age in Human Proximal Femur
,”
Bone
,
53
(
2
), pp.
451
458
.10.1016/j.bone.2013.01.015
32.
Grassi
,
L.
,
Väänänen
,
S. P.
,
Amin Yavari
,
S.
,
Weinans
,
H.
,
Jurvelin
,
J. S.
,
Zadpoor
,
A. A.
, and
Isaksson
,
H.
,
2013
, “
Experimental Validation of Finite Element Model for Proximal Composite Femur Using Optical Measurements
,”
J. Mech. Behav. Biomed. Mater.
,
21
(1), pp.
86
94
.10.1016/j.jmbbm.2013.02.006
33.
Poelert
,
S.
,
Valstar
,
E.
,
Weinans
,
H.
, and
Zadpoor
,
A. A.
,
2013
, “
Patient-Specific Finite Element Modeling of Bones
,”
Proc. Inst. Mech. Eng. H
,
227
(
4
), pp.
464
478
.10.1177/0954411912467884
You do not currently have access to this content.