An accurate axis-finding technique is required to measure any changes from normal caused by total knee arthroplasty in the flexion–extension (F–E) and longitudinal rotation (LR) axes of the tibiofemoral joint. In a previous paper, we computationally determined how best to design and use an instrumented spatial linkage (ISL) to locate the F–E and LR axes such that rotational and translational errors were minimized. However, the ISL was not built and consequently was not calibrated; thus the errors in locating these axes were not quantified on an actual ISL. Moreover, previous methods to calibrate an ISL used calibration devices with accuracies that were either undocumented or insufficient for the device to serve as a gold-standard. Accordingly, the objectives were to (1) construct an ISL using the previously established guidelines,(2) calibrate the ISL using an improved method, and (3) quantify the error in measuring changes in the F–E and LR axes. A 3D printed ISL was constructed and calibrated using a coordinate measuring machine, which served as a gold standard. Validation was performed using a fixture that represented the tibiofemoral joint with an adjustable F–E axis and the errors in measuring changes to the positions and orientations of the F–E and LR axes were quantified. The resulting root mean squared errors (RMSEs) of the calibration residuals using the new calibration method were 0.24, 0.33, and 0.15 mm for the anterior–posterior, medial–lateral, and proximal–distal positions, respectively, and 0.11, 0.10, and 0.09 deg for varus–valgus, flexion–extension, and internal–external orientations, respectively. All RMSEs were below 0.29% of the respective full-scale range. When measuring changes to the F–E or LR axes, each orientation error was below 0.5 deg; when measuring changes in the F–E axis, each position error was below 1.0 mm. The largest position RMSE was when measuring a medial–lateral change in the LR axis (1.2 mm). Despite the large size of the ISL, these calibration residuals were better than those for previously published ISLs, particularly when measuring orientations, indicating that using a more accurate gold standard was beneficial in limiting the calibration residuals. The validation method demonstrated that this ISL is capable of accurately measuring clinically important changes (i.e. 1 mm and 1 deg) in the F–E and LR axes.

References

1.
Hollister
,
A. M.
,
Jatana
,
S.
,
Singh
,
A. K.
,
Sullivan
,
W. W.
, and
Lupichuk
,
A. G.
,
1993
, “
The Axes of Rotation of the Knee
,”
Clin. Orthop. Relat. Res.
,
290
, pp.
259
268
.
2.
Eckhoff
,
D. G.
,
Bach
,
J. M.
,
Spitzer
,
V. M.
,
Reinig
,
K. D.
,
Bagur
,
M. M.
,
Baldini
,
T. H.
, and
Flannery
,
N. M.
,
2005
, “
Three-Dimensional Mechanics, Kinematics, and Morphology of the Knee Viewed in Virtual Reality
,”
J. Bone Joint Surg. Am.
,
87
(
Suppl. 2
), pp.
71
80
.10.2106/JBJS.E.00440
3.
Bonny
,
D. P.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2013
, “
Optimized Design of an Instrumented Spatial Linkage That Minimizes Errors in Locating the Rotational Axes of the Tibiofemoral Joint: A Computational Analysis
,”
ASME J. Biomech. Eng.
,
135
(
3
), p.
031003
.10.1115/1.4023135
4.
Kirstukas
,
S. J.
,
Lewis
,
J. L.
, and
Erdman
,
A. G.
,
1992
, “
6R Instrumented Spatial Linkages for Anatomical Joint Motion Measurement—Part 2: Calibration
,”
ASME J. Biomech. Eng.
,
114
(
1
), pp.
101
110
.10.1115/1.2895432
5.
Sholukha
,
V.
,
Salvia
,
P.
,
Hilal
,
I.
,
Feipel
,
V.
,
Rooze
,
M.
, and
Jan
,
S. V. S.
,
2004
, “
Calibration and Validation of 6 DOFs Instrumented Spatial Linkage for Biomechanical Applications. A Practical Approach
,”
Med. Eng. Phys.
,
26
(
3
), pp.
251
260
.10.1016/j.medengphy.2003.10.002
6.
Sommer
,
H. J.
, III
, and
Miller
,
N. R.
,
1981
, “
A Technique for the Calibration of Instrumented Spatial Linkages Used for Biomechanical Kinematic Measurements
,”
J. Biomech.
,
14
(
2
), pp.
91
98
.10.1016/0021-9290(81)90168-8
7.
Lewis
,
J. L.
,
Lew
,
W. D.
, and
Schmidt
,
J.
,
1988
, “
Description and Error Evaluation of an In Vitro Knee Joint Testing System
,”
ASME J. Biomech. Eng.
,
110
(
3
), pp.
238
248
.10.1115/1.3108437
8.
Nordquist
,
J.
, and
Hull
,
M. L.
,
2007
, “
Design and Demonstration of a New Instrumented Spatial Linkage for Use in a Dynamic Environment: Application to Measurement of Ankle Rotations During Snowboarding
,”
ASME J. Biomech. Eng.
,
129
(
2
), pp.
231
239
.
9.
Nordquist
,
J. A.
, and
Hull
,
M. L.
,
2009
, “
Design and Evaluation of a New General-Purpose Device for Calibrating Instrumented Spatial Linkages
,”
ASME J. Biomech. Eng.
,
131
(
3
), p.
034505
.10.1115/1.2965375
10.
Doebelin
,
E. O.
,
1975
,
Measurement Systems: Application and Design
,
McGraw-Hill
,
New York
.
11.
Gatti
,
G.
, and
Danieli
,
G.
,
2007
, “
Validation of a Calibration Technique for 6-DOF Instrumented Spatial Linkages
,”
J. Biomech.
,
40
(
7
), pp.
1455
1466
.10.1016/j.jbiomech.2006.06.021
12.
Paden
,
B.
, and
Sastry
,
S.
,
1988
, “
Optimal Kinematic Design of 6R Manipulators
,”
Int. J. Robot. Res.
,
7
(
2
), pp.
43
61
.10.1177/027836498800700204
13.
Uicker
,
J.
,
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1964
, “
An Iterative Method for the Displacement Analysis of Spatial Mechanisms
,”
ASME J. Appl. Mech.
,
31
(2), pp.
309
314
.10.1115/1.3629602
14.
Paul
,
R. P.
,
1981
,
Robot Manipulators: Mathematics, Programming, and Control
,
MIT Press
,
Cambridge, MA
.
15.
Roland
,
M.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2011
, “
Validation of a New Method for Finding the Rotational Axes of the Knee Using Both Marker-Based Roentgen Stereophotogrammetric Analysis and 3D Video-Based Motion Analysis for Kinematic Measurements
,”
ASME J. Biomech. Eng.
,
133
(
5
), p.
051003
.10.1115/1.4003437
16.
Coleman
,
T. F.
, and
Li
,
Y.
,
1996
, “
An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds
,”
SIAM J. Optim.
,
6
(
2
), pp.
418
445
.10.1137/0806023
17.
Coleman
,
T. F.
, and
Li
,
Y.
,
1994
, “
On the Convergence of Interior-Reflective Newton Methods for Nonlinear Minimization Subject to Bounds
,”
Math. Program.
,
67
(
1
), pp.
189
224
.10.1007/BF01582221
18.
Gatti
,
G.
,
2012
, “
On the Estimate of the Two Dominant Axes of the Knee Using an Instrumented Spatial Linkage
,”
J. Appl. Biomech.
,
28
(
2
), pp.
200
209
.
19.
Van Sint Jan
,
S.
,
Salvia
,
P.
,
Hilal
,
I.
,
Sholukha
,
V.
,
Rooze
,
M.
, and
Clapworthy
,
G.
,
2002
, “
Registration of 6-DOFs Electrogoniometry and CT Medical Imaging for 3D Joint Modeling
,”
J. Biomech.
,
35
(
11
), pp.
1475
1484
.10.1016/S0021-9290(02)00074-X
20.
Kirstukas
,
S. J.
,
Lewis
,
J. L.
, and
Erdman
,
A. G.
,
1992
, “
6R Instrumented Spatial Linkages for Anatomical Joint Motion Measurement—Part 1: Design
,”
ASME J. Biomech. Eng.
,
114
(
1
), pp.
92
100
.10.1115/1.2895455
21.
Nabeyama
,
R.
,
Matsuda
,
S.
,
Miura
,
H.
,
Mawatari
,
T.
,
Kawano
,
T.
, and
Iwamoto
,
Y.
,
2004
, “
The Accuracy of Image-Guided Knee Replacement Based on Computed Tomography
,”
J. Bone Joint Surg. Br.
,
86
(
3
), pp.
366
371
.10.1302/0301-620X.86B3.14047
22.
Mizu-Uchi
,
H.
,
Matsuda
,
S.
,
Miura
,
H.
,
Okazaki
,
K.
,
Akasaki
,
Y.
, and
Iwamoto
,
Y.
,
2008
, “
The Evaluation of Post-Operative Alignment in Total Knee Replacement Using a CT-Based Navigation System
,”
J. Bone Joint Surg. Br.
,
90
(
8
), pp.
1025
1031
.
23.
Mizu-Uchi
,
H.
,
Matsuda
,
S.
,
Miura
,
H.
,
Higaki
,
H.
,
Okazaki
,
K.
, and
Iwamoto
,
Y.
,
2009
, “
Three-Dimensional Analysis of Computed Tomography-Based Navigation System for Total Knee Arthroplasty: The Accuracy of Computed Tomography-Based Navigation System
,”
J. Arthroplasty
,
24
(
7
), pp.
1103
1110
.10.1016/j.arth.2008.07.007
24.
Churchill
,
D. L.
,
Incavo
,
S. J.
,
Johnson
,
C. C.
, and
Beynnon
,
B. D.
,
1998
, “
The Transepicondylar Axis Approximates the Optimal Flexion Axis of the Knee
,”
Clin. Orthop. Relat. Res.
,
356
, pp.
111
118
.10.1097/00003086-199811000-00016
25.
Coughlin
,
K. M.
,
Incavo
,
S. J.
,
Churchill
,
D. L.
, and
Beynnon
,
B. D.
,
2003
, “
Tibial Axis and Patellar Position Relative to the Femoral Epicondylar Axis During Squatting
,”
J. Arthroplasty
,
18
(
8
), pp.
1048
1055
.10.1016/S0883-5403(03)00449-2
26.
Kinzel
,
G. L.
,
Hall
,
A. S.
, Jr.
, and
Hillberry
,
B. M.
,
1972
, “
Measurement of the Total Motion Between Two Body Segments—I. Analytical Development
,”
J. Biomech.
,
5
(
1
), pp.
93
105
.10.1016/0021-9290(72)90022-X
27.
Salvia
,
P.
,
Woestyn
,
L.
,
David
,
J. H.
,
Feipel
,
V.
,
Van
,
S.
,
Jan
,
S.
,
Klein
,
P.
, and
Rooze
,
M.
,
2000
, “
Analysis of Helical Axes, Pivot and Envelope in Active Wrist Circumduction
,”
Clin. Biomech.
,
15
(
2
), pp.
103
111
.10.1016/S0268-0033(99)00055-8
28.
Ishii
,
Y.
,
Terajima
,
K.
,
Koga
,
Y.
,
Takahashi
,
H. E.
,
Bechtold
,
J. E.
, and
Gustilo
,
R. B.
,
1995
, “
Comparison of Knee Joint Functional Laxity After Total Knee Replacement with Posterior Cruciate-Retaining and Cruciate-Substituting Prostheses
,”
The Knee
,
2
(
4
), pp.
195
199
.10.1016/0968-0160(96)00006-3
You do not currently have access to this content.