Rupture risk assessment of abdominal aortic aneurysms (AAA) by means of biomechanical analysis is a viable alternative to the traditional clinical practice of using a critical diameter for recommending elective repair. However, an accurate prediction of biomechanical parameters, such as mechanical stress, strain, and shear stress, is possible if the AAA models and boundary conditions are truly patient specific. In this work, we present a complete fluid-structure interaction (FSI) framework for patient-specific AAA passive mechanics assessment that utilizes individualized inflow and outflow boundary conditions. The purpose of the study is two-fold: (1) to develop a novel semiautomated methodology that derives velocity components from phase-contrast magnetic resonance images (PC-MRI) in the infrarenal aorta and successfully apply it as an inflow boundary condition for a patient-specific fully coupled FSI analysis and (2) to apply a one-way–coupled FSI analysis and test its efficiency compared to transient computational solid stress and fully coupled FSI analyses for the estimation of AAA biomechanical parameters. For a fully coupled FSI simulation, our results indicate that an inlet velocity profile modeled with three patient-specific velocity components and a velocity profile modeled with only the axial velocity component yield nearly identical maximum principal stress (σ1), maximum principal strain (ε1), and wall shear stress (WSS) distributions. An inlet Womersley velocity profile leads to a 5% difference in peak σ1, 3% in peak ε1, and 14% in peak WSS compared to the three-component inlet velocity profile in the fully coupled FSI analysis. The peak wall stress and strain were found to be in phase with the systolic inlet flow rate, therefore indicating the necessity to capture the patient-specific hemodynamics by means of FSI modeling. The proposed one-way–coupled FSI approach showed potential for reasonably accurate biomechanical assessment with less computational effort, leading to differences in peak σ1, ε1, and WSS of 14%, 4%, and 18%, respectively, compared to the axial component inlet velocity profile in the fully coupled FSI analysis. The transient computational solid stress approach yielded significantly higher differences in these parameters and is not recommended for accurate assessment of AAA wall passive mechanics. This work demonstrates the influence of the flow dynamics resulting from patient-specific inflow boundary conditions on AAA biomechanical assessment and describes methods to evaluate it through fully coupled and one-way–coupled fluid-structure interaction analysis.

References

1.
Newman
,
A. B.
,
Arnold
,
A. M.
,
Burke
,
G. L.
,
O'Leary
,
D. H.
, and
Manolio
,
T. A.
,
2001
, “
Cardiovascular Disease and Mortality in Older Adults With Small Abdominal Aortic Aneurysms Detected by Ultrasonography: The Cardiovascular Health Study
,”
Ann. Intern. Med.
,
134
, pp.
182
190
.10.7326/0003-4819-134-3-200102060-00008
2.
Upchurch
, Jr.,
G. R.
, and
Schaub
,
T. A.
,
2006
, “
Abdominal Aortic Aneurysm
,”
Am. Fam. Physician
,
73
, pp.
1198
1204
.
3.
Lederle
,
F. A.
,
Johnson
,
G. R.
,
Wilson
,
S. E.
,
Chute
,
E. P.
,
Littooy
,
F. N.
,
Bandyk
,
D.
,
Krupski
,
W. C.
,
Barone
,
G. W.
,
Acher
,
C. W.
, and
Ballard
,
D. J.
,
1997
, “
Prevalence and Associations of Abdominal Aortic Aneurysm Detected Through Screening. Aneurysm Detection and Management (ADAM) Veterans Affairs Cooperative Study Group
,”
Ann. Intern. Med.
,
126
, pp.
441
449
.10.7326/0003-4819-126-6-199703150-00004
4.
Cornuz
,
J.
,
Sidoti Pinto
,
C.
,
Tevaearai
,
H.
, and
Egger
,
M.
,
2004
, “
Risk Factors for Asymptomatic Abdominal Aortic Aneurysm: Systematic Review and Meta-analysis of Population-Based Screening Studies
,”
Eur. J. Public Health
,
14
, pp.
343
349
.10.1093/eurpub/14.4.343
5.
Scott
,
R. A.
,
Ashton
,
H. A.
,
Lamparelli
,
M. J.
,
Harris
,
G. J.
, and
Stevens
,
J. W.
,
1999
, “
A 14-Year Experience With 6 cm as a Criterion for Surgical Treatment of Abdominal Aortic Aneurysm
,”
Br. J. Surg.
,
86
, pp.
1317
1321
.10.1046/j.1365-2168.1999.01227.x
6.
Valentine
,
R. J.
,
Decaprio
,
J. D.
,
Castillo
,
J. M.
,
Modrall
,
J. G.
,
Jackson
,
M. R.
, and
Clagett
,
G. P.
,
2000
, “
Watchful Waiting in Cases of Small Abdominal Aortic Aneurysms- Appropriate for All Patients?
J. Vasc. Surg.
,
32
, pp.
441
450
.10.1067/mva.2000.108635
7.
The UK Small Aneurysm Trial Participants
,
1998
, “
Mortality Results for Randomised Controlled Trial of Early Elective Surgery or Ultrasonographic Surveillance for Small Abdominal Aortic Aneurysms
,”
Lancet
,
352
(
9141
), pp.
1649
1655
.10.1016/S0140-6736(98)10137-X
8.
Raghavan
,
M. L.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
,
1996
, “
Ex Vivo Biomechanical Behavior of Abdominal Aortic Aneurysm: Assessment Using a New Mathematical Model
,”
Ann. Biomed. Eng.
,
24
, pp.
573
582
.10.1007/BF02684226
9.
Raghavan
,
M. L.
,
Vorp
,
D. A.
,
Federle
,
M. P.
,
Makaroun
,
M. S.
, and
Webster
,
M. W.
,
2000
, “
Wall Stress Distribution on Three-Dimensionally Reconstructed Models of Human Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
31
, pp.
760
769
.10.1067/mva.2000.103971
10.
Fillinger
,
M. F.
,
Raghavan
,
M. L.
,
Marra
,
S. P.
,
Cronenwett
,
J. L.
, and
Kennedy
,
F. E.
,
2002
, “
In Vivo Analysis of Mechanical Wall Stress and Abdominal Aortic Aneurysm Rupture Risk
,”
J. Vasc. Surg.
,
36
, pp.
589
597
.10.1067/mva.2002.125478
11.
Fillinger
,
M. F.
,
Marra
,
S. P.
,
Raghavan
,
M. L.
, and
Kennedy
,
F. E.
,
2003
, “
Prediction of Rupture Risk in Abdominal Aortic Aneurysm During Observation: Wall Stress Versus Diameter
,”
J. Vasc. Surg.
,
37
, pp.
724
732
.10.1067/mva.2003.213
12.
Vorp
,
D. A.
,
Raghavan
,
M. L.
, and
Webster
,
M. W.
,
1998
, “
Mechanical Wall Stress in Abdominal Aortic Aneurysm: Influence of Diameter and Asymmetry
,”
J. Vasc. Surg.
,
27
, pp.
632
639
.10.1016/S0741-5214(98)70227-7
13.
Sacks
,
M. S.
,
Vorp
,
D. A.
,
Raghavan
,
M. L.
,
Federle
,
M. P.
, and
Webster
,
M. W.
,
1999
, “
In Vivo Three-Dimensional Surface Geometry of Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
27
, pp.
469
479
.10.1114/1.202
14.
Raghavan
,
M.
,
Kratzberg
,
J.
, and
da Silva
,
E. S.
,
2004
, “
Heterogeneous, Variable Wall-Thickness Modeling of a Ruptured Abdominal Aortic Aneurysm
,”
ASME Conf. Proc.
,
2004
(
47039
), pp.
271
272
.
15.
Scotti
,
C. M.
,
Shkolnik
,
A. D.
,
Muluk
,
S.
, and
Finol
,
E. A.
,
2005
, “
Biomechanics of Compliant Abdominal Aortic Aneurysms: The Effect of Asymmetry and Wall Thickness
,”
Proceedings of the 2005 Summer Bioengineering Conference
.
16.
Di Martino
,
E. S.
, and
Vorp
,
D. A.
,
2003
, “
Effect of Variation in Intraluminal Thrombus Constitutive Properties on Abdominal Aortic Aneurysm Wall Stress
,”
Ann. Biomed. Eng.
,
31
, pp.
804
809
.10.1114/1.1581880
17.
Scotti
,
C. M.
,
Shkolnik
,
A. D.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2005
, “
Fluid-Structure Interaction in Abdominal Aortic Aneurysms: Effects of Asymmetry and Wall Thickness
,”
Biomed. Eng. Online
,
4
, p.
64
.10.1186/1475-925X-4-64
18.
Di Martino
,
E. S.
,
Guadagni
,
G.
,
Fumero
,
A.
,
Ballerini
,
G.
,
Spirito
,
R.
,
Biglioli
,
P.
, and
Redaelli
,
A.
,
2001
, “
Fluid-Structure Interaction Within Realistic Three-Dimensional Models of the Aneurysmatic Aorta as a Guidance to Assess the Risk of Rupture of the Aneurysm
,”
Med. Eng. Phys.
,
23
, pp.
647
655
.10.1016/S1350-4533(01)00035-2
19.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
,
2000
, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability
,”
J. Biomech.
,
33
, pp.
475
482
.10.1016/S0021-9290(99)00201-8
20.
Scotti
,
C. M.
, and
Finol
,
E. A.
,
2007
, “
Compliant Biomechanics of Abdominal Aortic Aneurysms: A Fluid Structure Interaction Study
,”
Comput. Struct.
,
85
, pp.
1097
1113
.10.1016/j.compstruc.2006.08.041
21.
Scotti
,
C. M.
,
Jimenez
,
J.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2008
, “
Wall Stress and Flow Dynamics in Abdominal Aortic Aneurysms: Finite Element Analysis vs. Fluid-Structure Interaction
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
, pp.
301
322
.10.1080/10255840701827412
22.
Papaharilaou
,
Y.
,
Ekaterinaris
,
J. A.
,
Manousaki
,
E.
, and
Katsamouris
,
A. N.
,
2007
, “
A Decoupled Fluid Structure Approach for Estimating Wall Stress in Abdominal Aortic Aneurysms
,”
J. Biomech.
,
40
, pp.
367
377
.10.1016/j.jbiomech.2005.12.013
23.
Wolters
,
B. J.
,
Rutten
,
M. C.
,
Schurink
,
G. W.
,
Kose
,
U.
,
de Hart
,
J.
, and
van de Vosse
,
F. N.
,
2005
, “
A Patient-Specific Computational Model of Fluid-Structure Interaction in Abdominal Aortic Aneurysms
,”
Med. Eng. Phys.
,
27
, pp.
871
883
.10.1016/j.medengphy.2005.06.008
24.
Bluestein
,
D.
,
Dumont
,
K.
,
De Beule
,
M.
,
Ricotta
,
J.
,
Impellizzeri
,
P.
,
Verhegghe
,
B.
, and
Verdonck
,
P.
,
2009
, “
Intraluminal Thrombus and Risk of Rupture in Patient Specific Abdominal Aortic Aneurysm-FSI Modeling
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
, pp.
73
81
.10.1080/10255840802176396
25.
Leung
,
J. H.
,
Wright
,
A. R.
,
Cheshire
,
N.
,
Crane
,
J.
,
Thom
,
S. A.
,
Hughes
,
A. D.
, and
Xu
,
Y.
,
2006
, “
Fluid Structure Interaction of Patient Specific Abdominal Aortic Aneurysms: A Comparison With Solid Stress Models
,”
Biomed. Eng. Online
,
5
, p.
33
.10.1186/1475-925X-5-33
26.
Rissland
,
P.
,
Alemu
,
Y.
,
Einav
,
S.
,
Ricotta
,
J.
, and
Bluestein
,
D.
,
2009
, “
Abdominal Aortic Aneurysm Risk of Rupture: Patient-Specific FSI Simulations Using Anisotropic Model
,”
ASME, J. Biomech. Eng.
,
131
, p.
031001
.10.1115/1.3005200
27.
Xenos
,
M.
,
Rambhia
,
S. H.
,
Alemu
,
Y.
,
Einav
,
S.
,
Labropoulos
,
N.
,
Tassiopoulos
,
A.
,
Ricotta
,
J. J.
, and
Bluestein
,
D.
,
2010
, “
Patient-Based Abdominal Aortic Aneurysm Rupture Risk Prediction With Fluid Structure Interaction Modeling
,”
Ann. Biomed. Eng.
,
38
, pp.
3323
3337
.10.1007/s10439-010-0094-3
28.
Olufsen
,
M. S.
,
1999
, “
Structured Tree Outflow Condition for Blood Flow in Larger Systemic Arteries
,”
Am. J. Physiol. Heart Circ. Physiol.
,
276
, pp.
H257
H268
.
29.
Olufsen
,
M. S.
,
Peskin
,
C. S.
,
Kim
,
W. Y.
,
Pedersen
,
E. M.
,
Nadim
,
A.
, and
Larsen
,
J.
,
2000
, “
Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions
,”
Ann. Biomed. Eng.
,
28
, pp.
1281
1299
.10.1114/1.1326031
30.
Steele
,
B. N.
, and
Taylor
,
C. A.
,
2003
, “
Simulation of Blood Flow in Abdominal Aorta at Rest and During Exercise Using 1D Finite Element Method With Impedance Boundary Conditions Derived From a Fractal Tree
,”
Proceedings of the 2003 ASME Summer Bioengineering Conference
.
31.
Kose
,
U.
,
Hoogeveen
,
R.
,
Breeuwer
,
M.
, and
dePutter
,
S.
,
2006
, “
Computational Fluid Dynamics of Abdominal Aortic Aneurysms With Patient Specific Inflow Boundary Conditions
,”
Proc. SPIE
,
6143
, p.
61432D
.10.1117/12.649755
32.
Kim
,
Y. H.
,
Kim
,
J. E.
,
Ito
,
Y.
,
Shih
,
A. M.
,
Brott
,
B.
, and
Anayiotos
,
A.
,
2008
, “
Hemodynamic Analysis of a Compliant Femoral Artery Bifurcation Model Using a Fluid Structure Interaction Framework
,”
Ann. Biomed. Eng.
,
36
, pp.
1753
1763
.10.1007/s10439-008-9558-0
33.
Tan
,
F. P. P.
,
Xu
,
X. Y.
,
Torii
,
R.
,
Wood
,
N. B.
,
Delahunty
,
N.
,
Mullen
,
M.
,
Moat
,
N.
, and
Mohiaddin
,
R.
,
2012
, “
Comparison of Aortic Flow Patterns Before and After Transcatheter Aortic Valve Implantation
,”
Cardiovasc. Eng. Tech.
,
3
, pp.
123
135
.10.1007/s13239-011-0073-3
34.
Martufi
,
G.
,
Di Martino
,
E. S.
,
Amon
,
C. H.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2009
, “
Three-Dimensional Geometrical Characterization of Abdominal Aortic Aneurysms: Image-Based Wall Thickness Distribution
,”
ASME, J. Biomech. Eng.
,
131
, p.
061015
.10.1115/1.3127256
35.
Shum
,
J.
,
Di Martino
,
E. S.
,
Goldhammer
,
A.
,
Goldman
,
D. H.
,
Acker
,
L. C.
,
Patel
,
G.
,
Ng
,
J. H.
,
Martufi
,
G.
, and
Finol
,
E. A.
,
2010
, “
Semi-automatic Vessel Wall Detection and Quantification of Wall Thickness in CT Images of Human Abdominal Aortic Aneurysms
,”
Med. Eng. Phys.
,
37
, pp.
638
648
.10.1118/1.3284976
36.
Shum
,
J.
,
Xu
,
A.
,
Chatnuntawech
,
I.
, and
Finol
,
E. A.
,
2011
, “
A Framework for the Automatic Generation of Surface Topologies for Abdominal Aortic Aneurysm Models
,”
Ann. Biomed. Eng.
,
39
, pp.
249
259
.10.1007/s10439-010-0165-5
37.
Liu
,
P.
,
2010
, “
A Volume Meshing Strategy for Patient Specific Abdominal Aortic Aneurysms
,” M.S. thesis, Carnegie Mellon University, Pittsburgh.
38.
Bathe
,
K. J.
, 2009,
ADINA 8.6 User Interface Command Reference Manual
,
Adina R&D Inc.
,
Watertown, MA
.
39.
Fournier
,
R. L.
,
1998
,
Basic Transport Phenomena in Biomedical Engineering
,
Taylor & Francis
,
Philadelphia
.
40.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
A Planar Biaxial Constitutive Relation for the Luminal Layer of Intra-luminal Thrombus in Abdominal Aortic Aneurysms
,”
J. Biomech.
,
39
, pp.
2347
2354
.10.1016/j.jbiomech.2006.05.011
41.
Driscoll
,
T.
,
1996
, “
Algorithm 756: A MATLAB Toolbox for Schwarz-Christoffel Mapping
,”
ACM Trans. Math. Softw.
,
22
, pp.
168
186
.10.1145/229473.229475
42.
Van't Veer
,
M.
,
Buth
,
J.
,
Merkx
,
M.
,
Tonino
,
P.
,
Bosch
,
H. V.
,
Pijlis
,
N.
, and
Vosse
,
F.
,
2008
, “
Biomechanical Properties of Abdominal Aortic Aneurysms Assessed by Simultaneously Measured Pressure and Volume Changes in Humans
,”
J. Vasc. Surg.
,
48
, pp.
1401
1407
.10.1016/j.jvs.2008.06.060
43.
Womersley
,
J. R.
,
1955
, “
Method for the Calculation of the Velocity, Rate of Flow and Viscous Drag in Arteries When Pressure Gradient Is Known
,”
J. Physiol
,
127
, pp.
533
563
.
You do not currently have access to this content.