We present a modeling and computational approach to study fusion of multicellular aggregates during tissue and organ fabrication, which forms the foundation for the scaffold-less biofabrication of tissues and organs known as bioprinting. It is known as the phase field method, where multicellular aggregates are modeled as mixtures of multiphase complex fluids whose phase mixing or separation is governed by interphase force interactions, mimicking the cell-cell interaction in the multicellular aggregates, and intermediate range interaction mediated by the surrounding hydrogel. The material transport in the mixture is dictated by hydrodynamics as well as forces due to the interphase interactions. In a multicellular aggregate system with fixed number of cells and fixed amount of the hydrogel medium, the effect of cell differentiation, proliferation, and death are neglected in the current model, which can be readily included in the model, and the interaction between different components is dictated by the interaction energy between cell and cell as well as between cell and medium particles, respectively. The modeling approach is applicable to transient simulations of fusion of cellular aggregate systems at the time and length scale appropriate to biofabrication. Numerical experiments are presented to demonstrate fusion and cell sorting during tissue and organ maturation processes in biofabrication.

References

1.
Perez-Pomares
,
J. M.
, and
Foty
,
R. A.
,
2006
, “
Tissue Fusion and Cell Sorting in Embryonic Development and Disease: Biomedical Implications
,”
Bioessays
,
28
(
6
), pp.
809
821
.10.1002/bies.20442
2.
Jakab
,
K.
,
Neagu
,
A.
,
Mironov
,
V.
,
Markwald
,
R. R.
, and
Forgacs
,
G.
,
2004
, “
Engineering Biological Structures of Prescribed Shape Using Self-Assembling Multicellular Systems
,”
Proc. Natl. Acad. Sci.
,
101
, pp.
2864
2869
.10.1073/pnas.0400164101
3.
Marga
,
F.
,
Neagu
,
A.
,
Kosztin
,
I.
, and
Forgacs
,
G.
,
2007
, “
Developmental Biology and Tissue Engineering
,”
Birth Defects Research (Part C)
,
81
, pp.
320
328
.10.1002/bdrc.20109
4.
Griffith
,
L. G.
, and
Naughton
,
G.
,
2002
, “
Tissue Engineering Current Challenges and Expanding Opportunities
,”
Science
,
295
, pp.
1009
1014
.10.1126/science.1069210
5.
Mironov
,
V.
,
Visconti
,
R. P.
,
Kasyanov
,
V.
,
Forgacs
,
G.
,
Drake
,
C. J.
, and
Markwald
,
R. R.
,
2009
, “
Organ Printing: Tissue Spheroids as Building Blocks
,”
Biomaterials
,
30
, pp.
2164
2174
.10.1016/j.biomaterials.2008.12.084
6.
Neagu
,
A.
,
Jakab
,
K.
,
Jamison
,
R.
, and
Forgacs
,
G.
,
2005
, “
Role of Physical Mechanisms in Biological Self-Organization
,”
Phys. Rev. Lett.
,
95
, p.
178104
.10.1103/PhysRevLett.95.178104
7.
Jakab
,
K.
,
Damon
,
B.
,
Neagu
,
A.
,
Kachurin
,
A.
, and
Forgacs
,
G.
,
2006
, “
Three-Dimensional Tissue Constructs Built By Bioprinting
,”
Biorheology
,
43
, pp.
509
513
.10.3233/BIR-130633
8.
Jakab
,
K.
,
Norotte
,
C.
,
Damon
,
B.
,
Marga
,
F.
,
Neagu
,
A.
,
Besch-Williford
,
C. L.
,
Kachurin
,
A.
,
Church
,
K. H.
,
Park
,
H.
,
Mironov
,
V.
,
Markwald
,
R. R.
,
Vunjak-Novakovic
,
G.
, and
Forgacs
,
G.
,
2008
, “
Tissue Engineering By Self-Assembly of Cells Printed Into Topologically Defined Structures
,”
Tissue Eng.
,
14
, pp.
413
421
.10.1089/tea.2007.0173
9.
Neagu
,
A.
,
Kosztin
,
I.
,
Jakab
,
K.
,
Barz
,
B.
,
Neagu
,
M.
,
Jamison
,
R.
, and
Forgacs
,
G.
,
2006
, “
Computational Modeling of Tissue Self-Assembly
,”
Mod. Phys. Lett. B
,
20
(
20
), pp.
1217
1231
.10.1142/S0217984906011724
10.
Mombacha
,
J. C. M.
,
Robert
,
D.
,
Granerc
,
F.
,
Gilletd
,
G.
,
Thomase
,
G. L.
,
Idiarte
,
M.
, and
Rieu
,
J.-P.
,
2005
, “
Rounding of Aggregates of Biological Cells: Experiments and Simulations
,”
Physica A
,
352
, pp.
525
534
.10.1016/j.physa.2005.02.008
11.
Mironov
,
V.
,
Zhang
,
J.
,
Gentile
,
C.
,
Brakkea
,
K.
,
Trusk
,
T.
,
Jakabb
,
K.
,
Forgacsb
,
G.
,
Kasyanov
,
V.
,
Visconti
,
R. P.
, and
Markwald
,
R. R.
,
2009
, “
Designer Blueprint for Vascular Trees: Morphology Evolution of Vascular Tissue Constructs
,”
Virtual and Physical Prototyping
,
4
(
2
), pp.
63
74
.10.1080/17452750802657202
12.
Visconti
,
R. P.
,
Kasyanov
,
V.
,
Gentile
,
C.
,
Zhang
,
J.
,
Markwald
,
R. R.
, and
Mironov
,
V.
,
2010
, “
Towards Organ Printing: Engineering an Intra-Organ Branched Vascular Tree
,”
Expert Opin. Biol. Ther.
,
10
(
3
), pp.
409
420
.10.1517/14712590903563352
13.
Preziosi
,
L.
,
Ambrosi
,
D.
, and
Verdier
,
C.
,
2010
, “
An Elasto-Visco-Plastic Model of Cell Aggregates
,”
J. Theor. Biol.
,
262
(
1
), pp.
35
47
.10.1016/j.jtbi.2009.08.023
14.
Cahn
,
J. W.
, and
Hilliard
,
J. E.
,
1958
, “
Free Energy of a Nonuniform System. I: Interfacial Free Energy
,”
J. Chem. Phys.
,
28
, pp.
258
267
.10.1063/1.1744102
15.
Cahn
,
J. W.
, and
Hilliard
,
J. E.
,
1959
, “
Free Energy of a Nonuniform System. III. Nucleation in a Two-Component Incompressible Fluid
,”
J. Chem. Phys.
,
31
, pp.
688
699
.10.1063/1.1730447
16.
Doi
,
M.
, and
Edwards
,
S. F.
,
1986
,
The Theory of Polymer Dynamics
,
Oxford Science Publications
,
Oxford
.
17.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1987
,
Dynamics of Polymeric Liquids
,
John Wiley and Sons
,
New York
.
18.
Zhang
,
T. Y.
,
Cogan
,
N.
, and
Wang
,
Q.
,
2008
, “
Phase Field Models for Biofilms. II. 2-D Numerical Simulations of Biofilm-Flow Interaction
,”
Commun. Comput. Phys.
,
4
, pp.
72
101
.10.4208/cicp.150311.090112a
19.
Wang
,
Q.
, and
Zhang
,
T. Y.
,
2012
, “
Kinetic Theories for Biofilms
,”
Dis. Cont. Dyn. Sys. B
,
17
(
3
), pp.
1027
1059
.10.3934/dcdsb.2012.17.1027
20.
Sethian
,
J. A.
,
1999
,
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
,
Cambridge University Press
,
Cambridge
.
21.
Osher
,
S. J.
, and
Fedkiw
,
R. P.
,
2006
,
Level Set Methods and Dynamic Implicit Surfaces
,
Springer-Verlag
,
Berlin
.
22.
Yang
,
X.
,
Mironov
,
V.
, and
Wang
,
Q.
,
2012
, “
Modeling Fusion of Cellular Aggregates in Biofabrication Using Phase Field Theories
,”
J. Theor. Biol.
,
303
, pp.
110
118
.10.1016/j.jtbi.2012.03.003
23.
Steinberg
,
M. S.
,
1963
, “
Reconstruction of Tissues by Dissociated Cells
,”
Science
,
141
, pp.
401
408
.10.1126/science.141.3579.401
24.
Foty
,
R. A.
, and
Steinberg
,
M. S.
,
2005
, “
The Differential Adhesion Hypothesis: A Direct Evaluation
,”
Dev. Biol.
,
278
, pp.
255
263
.10.1016/j.ydbio.2004.11.012
25.
Perez-Pomares
,
J. M.
, and
Foty
,
R. A.
,
2006
, “
Tissue Fusion and Cell Sorting in Embryonic Development and Disease: Biomedical Implications
,”
Bioessays
,
28
, pp.
809
821
.10.1002/bies.20442
26.
Flenner
,
E.
,
Marga
,
F.
,
Neagu
,
A.
,
Kosztin
,
I.
, and
Forgacs
,
G.
,
2008
, “
Relating Biophysical Properties Across Scales
,”
Curr. Top. Dev. Biol.
,
81
, pp.
461
483
.10.1016/S0070-2153(07)81016-7
27.
Foty
,
R. A.
,
Pfleger
,
C. M.
,
Forgacs
,
G.
, and
Steinberg
,
M. S.
,
1996
, “
Surface Tensions of Embryonic Tissues Predict Their Mutual Envelopment Behavior
,”
Development
,
122
, pp.
1611
1620
.
28.
Graner
,
F.
, and
Glazier
,
J. A.
,
1992
, “
Simulation of Biological Cell Sorting Using a 2-Dimensional Extended Potts Model
,”
Phys. Rev. Lett.
,
69
, pp.
2013
2016
.10.1103/PhysRevLett.69.2013
29.
Glazier
,
J. A.
, and
Graner
,
F.
,
1993
, “
A Simulation of the Differential Adhesion Driven Rearrangement of Biological Cells
,”
Phys. Rev. E
,
47
, pp.
2128
2154
.10.1103/PhysRevE.47.2128
30.
Godt
,
D.
, and
Tepass
,
U.
,
1998
, “
Drosophila Oocyte Localization is Mediated by Differential Cadherin-Based Adhesion
,”
Nature
,
395
, pp.
387
391
.10.1038/26493
31.
Gonzalez-Reyes
,
A.
, and
Johnston
,
D. S.
,
1998
, “
The Drosophila ap Axis is Polarized by the Cadherinmediated Positioning of the Oocyte
,”
Development
,
125
, pp.
3635
3644
.
32.
Bortz
,
A. B.
,
Kalos
,
M. H.
, and
Lebowitz
,
J. L.
,
1975
, “
A New Algorithm for Monte Carlo Simulation of Ising Spin Systems
,”
J. Comput. Phys.
,
17
, pp.
10
18
.10.1016/0021-9991(75)90060-1
33.
Sun
,
Y.
, and
Wang
,
Q.
,
2013
, “
Modeling and Simulations of Multicellular Aggregate Self-Assembly in Biofabrication Using Kinetic Monte Carlo Methods
,”
Soft Matter
,
9
, pp.
2172
2186
.10.1039/c2sm27090k
34.
Metropolis
,
N.
,
Rosenbluth
,
A. E.
,
Rosenbluth
,
M.
,
Teller
,
A. H.
, and
Teller
,
E.
,
1953
, “
Equation of State Calculations By Fast Computing Machines
,”
J. Chem. Phys.
,
21
, pp.
1087
1097
.10.1063/1.1699114
35.
Doi
,
M.
,
1996
,
Introduction to Polymer Physics
,
Oxford Science Publications
,
Oxford
.
36.
Flory
,
P. J.
,
1953
,
Principles of Polymer Chemistry
,
Cornell University Press
,
Ithaca, NY
.
37.
Chorin
,
A. J.
,
1968
, “
Numerical Solution of the Navier-Stokes Equations
,”
Math. Comp.
,
22
, pp.
745
762
.10.1090/S0025-5718-1968-0242392-2
38.
Chorin
,
A. J.
,
1969
, “
On the Convergence of Discrete Approximations to the Navier-Stokes Equations
,”
Math. Comp.
,
23
, pp.
341
353
.10.1090/S0025-5718-1969-0242393-5
39.
Temam.
,
R.
,
1969
, “
Sur l'Approximation de la Solution des Sequations de Navier-Stokes par la Methode des pas Fractionnaires II
,”
Arch. Ration. Mech. Anal.
,
33
, pp.
377
385
.10.1007/BF00247696
40.
Guermond
,
J. L.
, and
Shen
,
J.
,
2004
, “
On the Error Estimates of Rotational Pressure-Correction Projection Methods
,”
Math. Comp.
,
73
, pp.
1719
1737
.10.1090/S0025-5718-03-01621-1
41.
Shen
,
J.
, and
Yang
,
X.
,
2010
, “
Numerical Approximations of Allen-Cahn and Cahn–Hilliard Equations
,”
Discrete Continuous Dynamical. Syst. A
,
28
, pp.
1669
1691
.10.3934/dcds.2010.28.1669
42.
Yang
,
X.
,
Feng
,
J. J.
,
Liu
,
C.
, and
Shen
,
J.
,
2006
, “
Numerical Simulations of Jet Pinching-Off and Drop Formation Using an Energetic Variational Phase-Field Method
,”
J. Comput. Phys.
,
218
, pp.
417
428
.10.1016/j.jcp.2006.02.021
43.
Jakab
,
K.
,
Norotte
,
C.
,
Marga
,
F.
,
Murphy
,
K.
,
Vunjak-Novakovic
,
G.
, and
Forgacs
,
G.
,
2010
, “
Tissue Engineering by Self-Assembly and Bio-Printing of Living Cells
,”
Biofabrication
,
2
, p.
022001
.10.1088/1758-5082/2/2/022001
44.
Mehesz
,
A. N.
,
Brown
,
J.
,
Hajdu
,
Z.
,
Beaver
,
W.
,
da Silva
,
J. V. L.
,
Visconti
,
R. P.
,
Markwald
,
R. R.
, and
Mironov
,
V.
,
2011
, “
Scalable Robotic Biofabrication of Tissue Spheroids
,”
Biofabrication
,
3
, p.
025002
.10.1088/1758-5082/3/2/025002
You do not currently have access to this content.