The formation of microvascular networks (MVNs) is influenced by many aspects of the microenvironment, including soluble and insoluble biochemical factors and the biophysical properties of the surrounding matrix. It has also become clear that a dynamic and reciprocal interaction between the matrix and cells influences cell behavior. In particular, local matrix remodeling may play a role in driving cellular behaviors, such as MVN formation. In order to explore the role of matrix remodeling, an in vitro model of MVN formation involving suspending human umbilical vein endothelial cells within collagen hydrogels was used. The resulting cell and matrix morphology were microscopically observed and quantitative metrics of MVN formation and collagen gathering were applied to the resulting images. The macroscopic compaction of collagen gels correlates with the extent of MVN formation in gels of different stiffness values, with compaction preceding elongation leading to MVN formation. Furthermore, the microscopic analysis of collagen between cells at early timepoints demonstrates the alignment and gathering of collagen between individual adjacent cells. The results presented are consistent with the hypothesis that endothelial cells need to gather and align collagen between them as an early step in MVN formation.

References

1.
Paszek
,
M. J.
, and
Weaver
,
V. M.
,
2004
, “
The Tension Mounts: Mechanics Meets Morphogenesis and Malignancy
,”
J. Mammary Gland Biol. Neoplasia
,
9
(
4
), pp.
325
342
.10.1007/s10911-004-1404-x
2.
Paszek
,
M. J.
,
Zahir
,
N.
,
Johnson
,
K. R.
,
Lakins
,
J. N.
,
Rozenberg
,
G. I.
,
Gefen
,
A.
,
Reinhart-King
,
C. A.
,
Margulies
,
S. S.
,
Dembo
,
M.
,
Boettiger
,
D.
,
Hammer
,
D. A.
, and
Weaver
,
V. M.
,
2005
, “
Tensional Homeostasis and the Malignant Phenotype
,”
Cancer Cells
,
8
(
3
), pp.
241
254
.10.1016/j.ccr.2005.08.010
3.
Sieminski
,
A. L.
,
Hebbel
,
R. P.
, and
Gooch
,
K. J.
,
2004
, “
The Relative Magnitudes of Endothelial Force Generation and Matrix Stiffness Modulate Capillary Morphogenesis In Vitro
,”
Exp. Cell Res.
,
297
(
2
), pp.
574
584
.10.1016/j.yexcr.2004.03.035
4.
Kniazeva
,
E.
,
Weidling
,
J. W.
,
Singh
,
R.
,
Botvinick
,
E. L.
,
Digman
,
M. A.
,
Gratton
,
E.
, and
Putnam
,
A. J.
,
2012
, “
Quantification of Local Matrix Deformations and Mechanical Properties During Capillary Morphogenesis in 3d
,”
Integr. Biol. (Camb.)
,
4
(
4
), pp.
431
439
.10.1039/c2ib00120a
5.
Peyton
,
S. R.
,
Ghajar
,
C. M.
,
Khatiwala
,
C. B.
, and
Putnam
,
A. J.
,
2007
, “
The Emergence of ECM Mechanics and Cytoskeletal Tension as Important Regulators of Cell Function
,”
Cell Biochem. Biophys.
,
47
(
2
), pp.
300
320
.10.1007/s12013-007-0004-y
6.
Engler
,
A. J.
,
Sweeney
,
H. L.
,
Discher
,
D. E.
, and
Schwarzbauer
,
J. E.
,
2007
, “
Extracellular Matrix Elasticity Directs Stem Cell Differentiation
,”
J. Musculoskeletal and Neuronal Interact.
,
7
(
4
), p.
335
.
7.
Califano
,
J. P.
and
Reinhart-King
,
C. A.
,
2010
, “
Exogenous and Endogenous Force Regulation of Endothelial Cell Behavior
,”
J. Biomech.
,
43
(
1
), pp.
79
86
.10.1016/j.jbiomech.2009.09.012
8.
Sieminski
,
A. L.
,
Hebbel
,
R. P.
, and
Gooch
,
K. J.
,
2005
, “
Improved Microvascular Network In Vitro by Human Blood Outgrowth Endothelial Cells Relative to Vessel-Derived Endothelial Cells
,”
Tissue Eng.
,
11
(
9–10
), pp.
1332
1345
.10.1089/ten.2005.11.1332
9.
Ghajar
,
C. M.
,
Chen
,
X.
,
Harris
,
J. W.
,
Suresh
,
V.
,
Hughes
,
C. C.
,
Jeon
,
N. L.
,
Putnam
,
A. J.
, and
George
,
S. C.
,
2008
, “
The Effect of Matrix Density on the Regulation of 3-D Capillary Morphogenesis
,”
Biophys. J.
,
94
(
5
), pp.
1930
1941
.10.1529/biophysj.107.120774
10.
Rao
,
R. R.
,
Peterson
,
A. W.
,
Ceccarelli
,
J.
,
Putnam
,
A. J.
, and
Stegemann
,
J. P.
,
2012
, “
Matrix Composition Regulates Three-Dimensional Network Formation by Endothelial Cells and Mesenchymal Stem Cells in Collagen/Fibrin Materials
,”
Angiogenesis
,
15
(
2
), pp.
253
264
.10.1007/s10456-012-9257-1
11.
Vernon
,
R. B.
,
Angello
,
J. C.
,
Iruela-Arispe
,
M. L.
,
Lane
,
T. F.
, and
Sage
,
E. H.
,
1992
, “
Reorganization of Basement Membrane Matrices by Cellular Traction Promotes the Formation of Cellular Networks In Vitro
,”
Lab. Invest.
,
66
(
5
), pp.
536
547
.
12.
Kanzawa
,
S.
,
Endo
,
H.
, and
Shioya
,
N.
,
1993
, “
Improved In Vitro Angiogenesis Model by Collagen Density Reduction and the Use of Type III Collagen
,”
Ann. Plast. Surg.
,
30
(
3
), pp.
244
251
.10.1097/00000637-199303000-00008
13.
Nehls
,
V.
, and
Herrmann
,
R.
,
1996
, “
The Configuration of Fibrin Clots Determines Capillary Morphogenesis and Endothelial Cell Migration
,”
Microvasc. Res.
,
51
(
3
), pp.
347
364
.10.1006/mvre.1996.0032
14.
Sieminski
,
A. L.
,
Was
,
A. S.
,
Kim
,
G.
,
Gong
,
H.
, and
Kamm
,
R. D.
,
2007
, “
The Stiffness of Three-Dimensional Ionic Self-Assembling Peptide Gels Affects the Extent of Capillary-Like Network Formation
,”
Cell Biochem. Biophys.
,
49
(
2
), pp.
73
83
.10.1007/s12013-007-0046-1
15.
Vernon
,
R. B.
,
Lara
,
S. L.
,
Drake
,
C. J.
,
Iruela-Arispe
,
M. L.
,
Angello
,
J. C.
,
Little
,
C. D.
,
Wight
,
T. N.
, and
Sage
,
E. H.
,
1995
, “
Organized Type I Collagen Influences Endothelial Patterns During”Spontaneous Angiogenesis In Vitro”: Planar Cultures as Models of Vascular Development
,”
In Vitro Cell Dev. Biol.: Anim.
,
31
(
2
), pp.
120
131
.10.1007/BF02633972
16.
Reinhart-King
,
C. A.
,
Dembo
,
M.
, and
Hammer
,
D. A.
,
2008
, “
Cell-Cell Mechanical Communication Through Compliant Substrates
,”
Biophys. J.
,
95
(
12
), pp.
6044
6051
.10.1529/biophysj.107.127662
17.
Korff
,
T.
, and
Augustin
,
H. G.
,
1999
, “
Tensional Forces in Fibrillar Extracellular Matrices Control Directional Capillary Sprouting
,”
J. Cell Sci.
,
112
, pp.
3249
3258
.
18.
Lee
,
P. F.
,
Yeh
,
A. T.
, and
Bayless
,
K. J.
,
2009
, “
Nonlinear Optical Microscopy Reveals Invading Endothelial Cells Anisotropically Alter Three-Dimensional Collagen Matrices
,”
Exp. Cell Res.
,
315
(
3
), pp.
396
410
.10.1016/j.yexcr.2008.10.040
19.
Ceccarelli
,
J.
,
Cheng
,
A.
, and
Putnam
,
A. J.
,
2012
, “
Mechanical Strain Controls Endothelial Patterning During Angiogenic Sprouting
,”
Cell Mol. Bioeng.
,
5
(
4
), pp.
463
473
.10.1007/s12195-012-0242-y
20.
Pizzo
,
A. M.
,
Kokini
,
K.
,
Vaughn
,
L. C.
,
Waisner
,
B. Z.
, and
Voytik-Harbin
,
S. L.
,
2005
, “
Extracellular Matrix (ECM) Microstructural Composition Regulates Local Cell-ECM Biomechanics and Fundamental Fibroblast Behavior: A Multidimensional Perspective
,”
J. Appl. Physiol.
,
98
(
5
), pp.
1909
1921
.10.1152/japplphysiol.01137.2004
21.
Stevenson
,
M. D.
,
Sieminsk
,
A. L.
,
Mcleod
,
C. M.
,
Byfield
,
F. J.
,
Barocas
,
V. H.
, and
Gooch
,
K. J.
,
2010
, “
Pericellular Conditions Regulate Extent of Cell-Mediated Compaction of Collagen Gels
,”
Biophys. J.
,
98
, pp.
1
10
.10.1016/j.bpj.2009.09.055
22.
Reinhardt
,
J. W.
,
Krakauer
,
D. A.
, and
Gooch
,
K. J.
, “
Complex Matrix Remodeling and Durotaxis Can Emerge from Simple Rules for Cell-Matrix Interaction in Agent-Based Models
,”
ASME J. Biomech. Eng.
,
135
(
7
), p.
071003
.10.1115/1.4024463
23.
Dickinson
,
R. B.
,
Guido
,
S.
, and
Tranquillo
,
R. T.
,
1994
, “
Biased Cell-Migration of Fibroblasts Exhibiting Contact Guidance in Oriented Collagen Gels
,”
Ann. Biomed. Eng.
,
22
(
4
), pp.
342
356
.10.1007/BF02368241
24.
Raeber
,
G. P.
,
Lutolf
,
M. P.
, and
Hubbell
,
J. A.
,
2008
, “
Part II: Fibroblasts Preferentially Migrate in the Direction of Principal Strain
,”
Biomech. Model. Mechanobiol.
,
7
(
3
), pp.
215
225
.10.1007/s10237-007-0090-1
25.
Deroanne
,
C. F.
,
Lapiere
,
C. M.
, and
Nusgens
,
B. V.
,
2001
, “
In Vitro Tubulogenesis of Endothelial Cells by Relaxation of the Coupling Extracellular Matrix-Cytoskeleton
,”
Cardiovasc. Res.
,
49
(
3
), pp.
647
658
.10.1016/S0008-6363(00)00233-9
26.
Sieminski
,
A. L.
, and
Gooch
,
K. J.
,
2002
, “
Systemic Delivery of HGH Using Genetically Modified Tissue-Engineered Microvascular Networks: Prolonged Delivery and Endothelial Survival With Inclusion of Non-Endothelial Cells
,”
Tissue Eng.
,
8
(
6
), pp.
1057
1069
.10.1089/107632702320934155
27.
Sieminski
,
A. L.
, and
Gooch
,
K. J.
,
2004
, “
Salmon Fibrin Supports an Increased Number of Sprouts and Decreased Degradation While Maintaining Sprout Length Relative to Human Fibrin in an In Vitro Angiogenesis Model
,”
J. Biomater. Sci. Polym. Ed.
,
15
(
2
), pp.
237
242
.10.1163/156856204322793610
28.
Anderson
,
C. R.
,
Ponce
,
A. M.
, and
Price
,
R. J.
,
2004
, “
Immunohistochemical Identification of an Extracellular Matrix Scaffold That Microguides Capillary Sprouting in vivo
,”
J. Histochem. Cytochem.
,
52
(
8
), pp.
1063
1072
.10.1369/jhc.4A6250.2004
29.
Anghelina
,
M.
,
Krishnan
,
P.
,
Moldovan
,
L.
, and
Moldovan
,
N. I.
,
2006
, “
Monocytes/Macrophages Cooperate With Progenitor Cells During Neovascularization and Tissue Repair: Conversion of Cell Columns Into Fibrovascular Bundles
,”
Am. J. Pathol.
,
168
(
2
), pp.
529
541
.10.2353/ajpath.2006.050255
30.
Moon
,
J. J.
,
Saik
,
J. E.
,
Poche
,
R. A.
,
Leslie-Barbick
,
J. E.
,
Lee
,
S. H.
,
Smith
,
A. A.
,
Dickinson
,
M. E.
, and
West
,
J. L.
,
2010
, “
Biomimetic Hydrogels With Pro-Angiogenic Properties
,”
Biomaterials
,
31
(
14
), pp.
3840
3847
.10.1016/j.biomaterials.2010.01.104
31.
Leslie-Barbick
,
J. E.
,
Moon
,
J. J.
, and
West
,
J. L.
,
2009
, “
Covalently-Immobilized Vascular Endothelial Growth Factor Promotes Endothelial Cell Tubulogenesis in Poly(Ethylene Glycol) Diacrylate Hydrogels
,”
J. Biomater. Sci. Polym. Ed.
,
20
(
12
), pp.
1763
1779
.10.1163/156856208X386381
32.
Ma
, X.
,
Schickel
,
M.
,
Stevenson
,
M. D.
,
Sarang-Sieminski
,
A. L.
,
Gooch
,
K. J.
,
Ghadiali
,
S. N.
, and
Hart
,
m R. T.
,
2013
, “
Fibers in the Extracellular Matrix Enable Long-Range Stress Transmission between Cells
,”
Biophys. J.
(in press).
You do not currently have access to this content.