Little work has been done on the localization of microcracks in bone using acoustic emission. Microcrack localization is useful to study the fracture process in bone and to prevent fractures in patients. Locating microcracks that occur before fracture allows one to predict where fracture will occur if continued stress is applied to the bone. Two source location algorithms were developed to locate microcracks on rectangular bovine bone samples. The first algorithm uses a constant velocity approach which has some difficulty dealing with the anisotropic nature of bone. However, the second algorithm uses an iterative technique to estimate the correct velocity for the acoustic emission source location being located. In tests with simulated microcracks, the constant velocity algorithm achieves a median error of 1.78 mm (IQR 1.51 mm) and the variable velocity algorithm improves this to a median error of 0.70 mm (IQR 0.79 mm). An experiment in which the bone samples were loaded in a three point bend test until they fractured showed a good correlation between the computed location of detected microcracks and where the final fracture occurred. Microcracks can be located on bovine bone samples using acoustic emission with good accuracy and precision.

References

1.
Rajachar
,
R. M.
,
Chow
,
D. L.
,
Curtis
,
C. E.
,
Weissman
,
N. A.
, and
Kohn
,
D. H.
,
1999
,
Acoustic Emission: Standards and Technology Update
,
ASTM STP I353
,
West Conshohocken
, pp.
3
21
, Chap. 1.
2.
Akkus
,
O.
,
Jepsen
,
K. J.
, and
Rimnac
,
C. M.
,
2000
, “
Microstructural Aspects of the Fracture Process in Human Cortical Bone
,”
J. Mater. Sci.
,
35
, pp.
6065
6074
.10.1023/A:1026719531300
3.
Baron
,
J. A.
, and
Ying
,
S. P.
,
1987
,
Acoustic Emission Testing: Nondestructive Testing Handbook
,
American Society for NDT
,
Columbus
, pp.
135
154
.
4.
Horn
,
M.
,
1996
, “
Acoustic Emission Source Location by Reverse Ray Tracing
,” U.S. Patent No. 5,528,557.
5.
Hensman
,
J.
,
Mills
,
R.
,
Pierce
,
S. G.
,
Worden
,
K.
, and
Eaton
,
M.
,
2010
, “
Locating Acoustic Emission Sources in Complex Structures Using Gaussian Processes
,”
Mech. Syst. Signal Process.
,
24
(
1
), pp.
211
223
.10.1016/j.ymssp.2009.05.018
6.
Qi
,
G.
,
Pujol
,
J.
, and
Fan
,
Z.
,
2000
, “
3-D AE Visualization of Bone-Cement Fatigue Locations
,”
J. Biomed. Mater. Res.
,
52
(
2
), pp.
256
260
.10.1002/1097-4636(200011)52:2<256::AID-JBM3>3.0.CO;2-S
7.
Lee
,
D.
,
Jo
,
M.
,
Lee
,
S.
, and
Ko
,
H.
,
2006
, “
Implementation of the Position Location System in a Underwater Channel Environments
,”
WESPAC IX 2006 - The 9th Western Pacific Acoustics Conference
,
Seoul, Korea
,
June 26–28
.
8.
Qi
,
G.
, and
Li
,
J.
,
2007
, “
Experimental-Computational Solution to Fatigue Induced Microcrack Source Localization in Cemented Hip Arthroplasty Models
,”
NDT & E Int.
,
40
, pp.
378
389
.10.1016/j.ndteint.2007.01.001
9.
Fischer
,
R. A.
,
Arms
,
S. W.
,
Pope
,
M. H.
, and
Seligson
,
D.
,
1986
, “
Analysis of the Effect of using Two Different Strain Rates on the Acoustic Emission in Bone
,”
J. Biomech.
,
19
(
2
), pp.
119
127
.10.1016/0021-9290(86)90142-9
10.
Wright
,
T.
,
Vosburgh
,
F.
, and
Burstein
,
A. H.
,
1981
, “
Permanent Deformation of Compact Bone Monitored by Acoustic Emission
,”
J. Biomech.
,
14
(
6
), pp.
405
409
.10.1016/0021-9290(81)90058-0
11.
Rajachar
,
R. M.
,
Chow
,
D. L.
, and
Kohn
,
D. H.
,
1999
,
Determining Mechanisms of Microdamage Formation and Accumulation in Cortical Bone Using Acoustic Emission
, BED Series,
Proceedings of the 1999 Bioengineering Conference
,
Big Sky, Montana
,
Vijay K.
Goel
, ed., American Society of Mechanical Engineers, NY, Vol.
42
.
12.
Kann
,
P.
,
Schulz
,
U.
,
Nink
,
M.
,
Pfützner
,
A.
,
Schrezenmeir
,
J.
, and
Beyer
,
J.
,
1993
, “
Architecture in Cortical Bone and Ultrasound Transmission Velocity
,”
J. Clin. Rheumatol.
,
12
(
3
), pp.
364
367
.10.1007/BF02231581
13.
Kalyanasundaram
,
P.
,
Mukhopadhyay
,
C. K.
, and
Subba Rao
,
S. V.
,
2007
,
Practical Acoustic Emission
,
Alpha Science International
,
Oxford
, pp.
51
52
.
You do not currently have access to this content.