Usually the measurement of multi-segment foot and ankle complex kinematics is done with stationary motion capture devices which are limited to use in a gait laboratory. This study aimed to propose and validate a wearable system to measure the foot and ankle complex joint angles during gait in daily conditions, and then to investigate its suitability for clinical evaluations. The foot and ankle complex consisted of four segments (shank, hindfoot, forefoot, and toes), with an inertial measurement unit (3D gyroscopes and 3D accelerometers) attached to each segment. The angles between the four segments were calculated in the sagittal, coronal, and transverse planes using a new algorithm combining strap-down integration and detection of low-acceleration instants. To validate the joint angles measured by the wearable system, three subjects walked on a treadmill for five minutes at three different speeds. A camera-based stationary system that used a cluster of markers on each segment was used as a reference. To test the suitability of the system for clinical evaluation, the joint angle ranges were compared between a group of 10 healthy subjects and a group of 12 patients with ankle osteoarthritis, during two 50-m walking trials where the wearable system was attached to each subject. On average, over all joints and walking speeds, the RMS differences and correlation coefficients between the angular curves obtained using the wearable system and the stationary system were 1 deg and 0.93, respectively. Moreover, this system was able to detect significant alteration of foot and ankle function between the group of patients with ankle osteoarthritis and the group of healthy subjects. In conclusion, this wearable system was accurate and suitable for clinical evaluation when used to measure the multi-segment foot and ankle complex kinematics during long-distance walks in daily life conditions.

References

1.
Eslami
,
M.
,
Begon
,
M.
,
Farahpour
,
N.
, and
Allard
,
P.
, 2007, “
Forefoot-Rearfoot Coupling Patterns and Tibial Internal Rotation During Stance Phase of Barefoot Versus Shod Running
,”
Clin. Biomech.
,
22
(
1
), pp.
74
80
.
2.
Leardini
,
A.
,
Benedetti
,
M. G.
,
Berti
,
L.
,
Bettinelli
,
D.
,
Nativo
,
R.
, and
Giannini
,
S.
, 2007, “
Rear-Foot, Mid-Foot and Fore-Foot Motion During the Stance Phase of Gait
,”
Gait Posture
,
25
(
3
), pp.
453
462
.
3.
Canseco
,
K.
,
Long
,
J.
,
Marks
,
R.
,
Khazzam
,
M.
, and
Harris
,
G.
, 2009, “
Quantitative Motion Analysis in Patients With Hallux Rigidus Before and After Cheilectomy
,”
J. Orthopaedic Res.
,
27
(
1
), pp.
128
134
.
4.
Baker
,
R.
, and
Robb
,
J.
, 2006, “
Foot Models for Clinical Gait Analysis
,”
Gait Posture
,
23
(
4
), pp.
399
400
.
5.
Bussmann
,
J. B. J.
,
Veltink
,
P. H.
,
Koelma
,
F.
,
Van Lummel
,
R. C.
, and
Stam
,
H. J.
, 1995, “
Ambulatory Monitoring of Mobility-Related Activities: The Initial Phase of the Development of an Activity Monitor
,”
European Journal of Physical Medicine Rehabilitation
,
5
(
1
), pp.
2
7
.
6.
Najafi
,
B.
,
Helbostad
,
J. L.
,
Moe-Nilssen
,
R.
,
Zijlstra
,
W.
, and
Aminian
,
K.
, 2009, “
Does Walking Strategy in Older People Change As a Function of Walking Distance?
,”
Gait Posture
,
29
(
2
), pp.
261
266
.
7.
Lindemann
,
U.
,
Najafi
,
B.
,
Zijlstra
,
W.
,
Hauer
,
K.
,
Muche
,
R.
,
Becker
,
C.
, and
Aminian
,
K.
, 2008, “
Distance to Achieve Steady State Walking Speed in Frail Elderly Persons
,”
Gait Posture
,
27
(
1
), pp.
91
96
.
8.
Dejnabadi
,
H.
,
Jolles
,
B. M.
, and
Aminian
,
K.
, 2005, “
A New Approach to Accurate Measurement of Uniaxial Joint Angles Based on a Combination of Accelerometers and Gyroscopes
,”
IEEE Trans. Biomed. Eng.
,
52
(
8
), pp.
1478
1484
.
9.
Favre
,
J.
,
Jolles
,
B. M.
,
Aissaoui
,
R.
, and
Aminian
,
K.
, 2008, “
Ambulatory Measurement of 3D Knee Joint Angle
,”
J. Biomech.
,
41
(
5
), pp.
1029
1035
.
10.
Cappozzo
,
A.
,
Della Croce
,
U.
,
Leardini
,
A.
, and
Chiari
,
L.
, 2005, “
Human Movement Analysis Using Stereophotogrammetry: Part 1: Theoretical Background
,”
Gait Posture
,
21
(
2
), pp.
186
196
.
11.
Picerno
,
P.
,
Cereatti
,
A.
, and
Cappozzo
,
A.
, 2008, “
Joint Kinematics Estimate Using Wearable Inertial and Magnetic Sensing Modules
,”
Gait Posture
,
28
(
4
), pp.
588
595
.
12.
O’Donovan
,
K. J.
,
Kamnik
,
R.
,
O’Keeffe
,
D. T.
, and
Lyons
,
G. M.
, 2007, “
An Inertial and Magnetic Sensor Based Technique for Joint Angle Measurement
,”
J. Biomech.
,
40
(
12
), pp.
2604
2611
.
13.
Favre
,
J.
,
Aissaoui
,
R.
,
Jolles
,
B. M.
,
de Guise
,
J. A.
, and
Aminian
,
K.
, 2009, “
Functional Calibration Procedure for 3D Knee Joint Angle Description Using Inertial Sensors
,”
J. Biomech.
,
42
(
14
), pp.
2330
2335
.
14.
Favre
,
J.
,
Crevoisier
,
X.
,
Jolles
,
B. M.
, and
Aminian
,
K.
2010, “
Evaluation of a Mixed Approach Combining Stationary and Wearable Systems to Monitor Gait Over Long Distance
,”
J. Biomech.
,
43
(
11
), pp.
2196
2202
.
15.
Favre
,
J.
,
Jolles
,
B. M.
,
Siegrist
,
O.
, and
Aminian
,
K.
, 2006, “
Quaternion-Based Fusion of Gyroscopes and Accelerometers to Improve 3D Angle Measurement
,”
Electron. Lett.
,
42
(
11
), pp.
612
614
.
16.
Roetenberg
,
D.
,
Luinge
,
H. J.
,
Baten
,
C. T. M.
, and
Veltink
,
P. H.
, 2005, “
Compensation of Magnetic Disturbances Improves Inertial and Magnetic Sensing of Human Body Segment Orientation
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
13
(
3
), pp.
395
405
.
17.
Sabatini
,
A. M.
, 2006, “
Quaternion-Based Extended Kalman Filter for Determining Orientation by Inertial and Magnetic Sensing
,”
IEEE Trans. Biomed. Eng.
,
53
(
7
), pp.
1346
1356
.
18.
Sabatini
,
A. M.
,
Martelloni
,
C.
,
Scapellato
,
S.
, and
Cavallo
,
F.
, 2005, “
Assessment of Walking Features From Foot Inertial Sensing
,”
IEEE Trans. Biomed. Eng.
,
52
(
3
), pp.
486
494
.
19.
Schepers
,
H. M.
,
Koopman
,
H. F. J. M.
, and
Veltink
,
P. H.
, 2007, “
Ambulatory Assessment of Ankle and Foot Dynamics
,”
IEEE Trans. Biomed. Eng.
,
54
(
5
), pp.
895
902
.
20.
Mariani
,
B.
,
Hoskovec
,
C.
,
Rochat
,
S.
,
Büla
,
C.
,
Penders
,
J.
, and
Aminian
,
K.
, 2010, “
3D Gait Assessment in Young and Elderly Subjects Using Foot-Worn Inertial Sensors
,”
J Biomech.
,
43
(
15
), pp.
2999
3006
.
21.
de Vries
,
W. H. K.
,
Veeger
,
H. E. J.
,
Baten
,
C. T. M.
, and
van der Helm
,
F. C. T.
, 2009, “
Magnetic Distortion in Motion Labs, Implications for Validating Inertial Magnetic Sensors
,”
Gait Posture
,
29
(
4
), pp.
535
541
.
22.
Rouhani
,
H.
,
Favre
,
J.
,
Crevoisier
,
X.
,
Jolles
,
B. M.
, and
Aminian
,
K.
, 2011, “
Segmentation of Foot and Ankle Complex Based on Kinematic Criteria
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
9
), pp.
773
781
.
23.
Cappozzo
,
A.
,
Catani
,
F.
,
Della Croce
,
U.
, and
Leardini
,
A.
, 1995, “
Position and Orientation in Space of Bones During Movement: Anatomical Frame Definition and Determination
,”
Clin. Biomech.
,
10
(
4
), pp.
171
178
.
24.
Salarian
,
A.
,
Russmann
,
H.
,
Vingerhoets
,
F. J.
,
Dehollain
,
C.
,
Blanc
,
Y.
,
Burkhard
,
P. R.
, and
Aminian
,
K.
, 2004, “
Gait Assessment in Parkinson’s Disease: Toward an Ambulatory System for Long-Term Monitoring
,”
IEEE Trans. Biomed. Eng.
,
51
(
8
), pp.
1434
1443
.
25.
Dejnabadi
,
H.
,
Jolles
,
B. M.
,
Casanova
,
E.
,
Fua
,
P.
, and
Aminian
,
K.
, 2006, “
Estimation and Visualization of Sagittal Kinematics of Lower Limbs Orientation Using Body-Fixed Sensors
,”
IEEE Trans. Biomed. Eng.
,
53
(
7
), pp.
1385
1393
.
26.
Peruzzi
,
A.
,
Della Croce
,
U.
, and
Cereatti
,
A.
, 2011, “
Estimation of Stride Length in Level Walking Using an Inertial Measurement Unit Attached to the Foot: A Validation of the Zero Velocity Assumption During Stance
,”
J. Biomech.
,
44
(
10
), pp.
1991
1994
.
27.
Higham
,
N. J.
, 2009, “
The Scaling and Squaring Method for the Matrix Exponential Revisited
,”
SIAM Rev.
,
51
(
4
), pp.
747
764
.
28.
Grood
,
E. S.
, and
Suntay
,
W. J.
, 1983, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.
29.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
,
Whittle
,
M.
,
D’Lima
,
D. D.
,
Cristofolini
,
L.
,
Witte
,
H.
,
Schmid
,
O.
, and
Stokes
,
I.
, 2002, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part I: Ankle, Hip, and Spine
,”
J. Biomech.
,
35
(
4
), pp.
543
548
.
30.
Valderrabano
,
V.
,
Nigg
,
B. M.
,
von Tscharner
,
V.
,
Stefanyshyn
,
D. J.
,
Goepfert
,
B.
, and
Hintermann
,
B.
, 2007, “
Gait Analysis in Ankle Osteoarthritis and Total Ankle Replacement
,”
Clin. Biomech.
,
22
(
8
), pp.
894
904
.
31.
Ingrosso
,
S.
,
Benedetti
,
M. G.
,
Leardini
,
A.
,
Casanelli
,
S.
,
Sforza
,
T.
, and
Giannini
,
S.
, 2009, “
GAIT Analysis in Patients Operated With a Novel Total Ankle Prosthesis
,”
Gait Posture
,
30
(
2
), pp.
132
137
.
32.
Kadaba
,
M. P.
,
Ramakrishnan
,
H. K.
,
Wootten
,
M. E.
,
Gainey
,
J.
,
Gorton
,
G.
, and
Cochran
,
G. V. B.
, 1989, “
Repeatability of Kinematic, Kinetic, and Electromyographic Data in Normal Adult Gait
,”
J. Orthopaedic Res.
,
7
(
6
), pp.
849
860
.
33.
Bae
,
J.
,
Kong
,
K.
,
Byl
,
N.
, and
Tomizuka
,
M.
, 2011, “
A Mobile Gait Monitoring System for Abnormal Gait Diagnosis and Rehabilitation: A Pilot Study for Parkinson Disease Patients
,”
J. Biomech. Eng.
,
133
(
4
), p.
041005
.
34.
Rouhani
,
H.
,
Favre
,
J.
,
Crevoisier
,
X.
, and
Aminian
,
K.
, 2011, “
Ambulatory Measurement of Ankle Kinetics for Clinical Applications
,”
J. Biomech.
,
44
(
15
), pp.
2712
2718
.
35.
Dubost
,
V.
,
Annweiler
,
C.
,
Aminian
,
K.
,
Najafi
,
B.
,
Herrmann
,
F. R.
, and
Beauchet
O.
, 2008, “
Stride-to-stride Variability While Enumerating Animal Names Among Healthy Young Adults: Result of Stride Velocity or Effect of Attention-Demanding Task?
,”
Gait Posture
,
27
(
1
), pp.
138
43
.
You do not currently have access to this content.