After total hip arthroplasty, impingement of implant components may occur during every-day patient activities causing increased shear stresses at the acetabular implant–bone interface. In the literature, impingement related lever-out moments were noted for a number of acetabular components. But there is little information about pelvic load transfer. The aim of the current study was to measure the three-dimensional strain distribution at the macrostructured hemispherical interface and in the periphery of a standard acetabular press-fit cup in an experimental implant-bone substitute model. An experimental setup was developed to simulate impingement loading via a lever arm representing the femoral component and the lower limb. In one experimental setup 12 strain gauges were embedded at predefined positions in the periphery of the acetabular cup implant inside a tray, using polyurethane composite resin as a bone substitute material. By incremental rotation of the implant tray in steps of 10 and 30 deg, respectively, the strains were measured at evenly distributed positions. With the described method 288 genuine strain values were measured in the periphery of an embedded acetabular cup implant in one experimental setup. In two additional setups the strains were evaluated at different distances from the implant interface. Both in radial and meridional interface directions strain magnitudes reach their peak near the rim of the cup below the impingement site. Values of equatorial strains vary near zero and reach their peaks near the rim of the cup on either side and in some distance from the impingement site. Interestingly, the maximum of averaged radial strains does not occur, as expected, close to the interface but at an interface offset of 5.6 mm. With the described experimental setup it is now possible to measure and display the three-dimensional strain distribution in the interface and the periphery of an embedded acetabular cup implant. The current study provides the first experimental proof of the high local stresses gradients in the direct vicinity of the impingement site. The results of the current study help for a better understanding of the impingement mechanism and its impact on acetabular cup stability.

References

1.
Scifert
,
C. F.
,
Noble
,
P. C.
,
Brown
,
T. D.
,
Bartz
,
R. L.
,
Kadakia
,
N.
,
Sugano
,
N.
,
Johnston
,
R. C.
,
Pedersen
,
D. R.
, and
Callaghan
,
J. J.
, 2001, “
Experimental and Computational Simulation of Total Hip Arthroplasty Dislocation
,”
Orthop. Clin. North Am.
,
32
(
4
), pp.
553
567
.
2.
Havelin
,
L. I.
,
Fenstad
,
A. M.
,
Salomonsson
,
R.
,
Mehnert
,
F.
,
Furnes
,
O.
,
Overgaard
,
S.
,
Pedersen
,
A. B.
,
Herberts
,
P.
,
Kärrholm
,
J.
, and
Garellick
,
G.
, 2009, “
The Nordic Arthroplasty Register Association: A Unique Collaboration Between 3 National Hip Arthroplasty Registries With 280,201 THRs
,”
Acta Orthop.
,
80
(
4
), pp.
393
401
.
3.
Pillar
,
R. M.
,
Lee
,
J. M.
, and
Maniatopoulos
,
C.
, 1986,“
Observations on the Effect of Movement on Bone Ingrowth into Porous-Surfaced Implants
,”
Clin. Orthop. Relat. Res.
, (
208
) pp.
108
113
.
4.
Ingham
,
E.
, and
Fisher
,
J.
, 2000, “
Biological Reactions to Wear Debris in Total Joint Replacement
,”
Proc. Inst. Mech. Eng. Part H, J. Eng. Med.
,
214
(
1
), pp.
21
37
.
5.
Malchau
,
H.
,
Herberts
,
P.
,
Eisler
,
T.
,
Garellick
,
G.
, and
Söderman
,
P.
, 2002, “
The Swedish Total Hip Replacement Register
,”
J. Bone Jt. Surg. Am.
,
84-A
Suppl. 2, pp.
2
20
.
6.
Beaulé
,
P. E.
,
Schmalzried
,
T. P.
,
Udomkiat
,
P.
, and
Amstutz
,
H. C.
, 2002, “
Jumbo Femoral Head for the Treatment of Recurrent Dislocation Following Total Hip Replacement
,”
J. Bone Jt. Surg. Am.
,
84-A
(
2
), pp.
256
263
.
7.
Robbins
,
G. M.
,
Masri
,
B. A.
,
Garbuz
,
D. S.
,
Greidanus
,
N.
, and
Duncan
C. P.
, 2001, “
Treatment of Hip Instability
,”
Orthop. Clin. North Am.
,
32
(
4
), pp.
593
610
.
8.
McCollum
,
D. E.
, and
Gray
,
W. J.
, 1990, “
Dislocation after Total Hip Arthroplasty. Causes and Prevention
,”
Clin. Orthop. Relat. Res.
, (
261
), pp.
159
170
.
9.
Woo
,
R. Y.
, and
Morrey
,
B. F.
, 1982, “
Dislocations after Total Hip Arthroplasty
,”
J. Bone Jt. Surg. Am.
,
64
(
9
), pp.
1295
1306
.
10.
Morrey
,
B. F.
, 1992, “
Instability after Total Hip Arthroplasty
,”
Orthop. Clin. North Am.
,
23
(
2
), pp.
237
248
.
11.
Brown
,
T. D.
, and
Callaghan
,
J. J.
, 2008, “
Impingement in Total Hip Replacement: Mechanisms and Consequences
,”
Curr. Orthop.
,
22
(
6
), pp.
376
391
.
12.
Voigt
,
C.
,
Klöhn
,
C.
,
Bader
,
R.
,
von Salis-Soglio
,
G.
, and
Scholz
,
R.
, 2007, “
Finite Element Analysis of Shear Stresses at the Implant-Bone Interface of an Acetabular Press-Fit Cup During Impingement
,”
Biomed. Tech. (Berl.)
,
52
(
2
), pp.
208
215
.
13.
Anderson
,
M. J.
Murray
,
W. R.
Skinner
,
H. B.
, 1994, “
Constrained Acetabular Components
,”
J. Arthroplasty
,
9
(
1
), pp.
17
23
.
14.
Barrack
,
R. L.
, and
Schmalzried
,
T. P.
, 2002, “
Impingement and Rim Wear Associated with Early Osteolysis after a Total Hip Replacement: a Case Report
,”
J. Bone Jt. Surg., Am.
,
84-A
(
7
), pp.
1218
1220
.
15.
Kaper
,
B. P.
, and
Bernini
,
P. M.
, 1998, “
Failure of a Constrained Acetabular Prosthesis of a Total Hip Arthroplasty. A Report of Four Cases
,”
J. Bone Jt. Surg., Am.
,
80
(
4
), pp.
561
565
.
16.
Murray
,
D. W.
, 1992, “
Impingement and Loosening of the Long Posterior Wall Acetabular Implant
,”
J. Bone Jt. Surg., Br.
,
74
(
3
), pp.
377
379
.
17.
Adler
,
E.
,
Stuchin
,
S. A.
, and
Kummer
,
F. J.
, 1992, “
Stability of Press-Fit Acetabular Cups
,”
J. Arthroplasty
,
7
(
3
), pp.
295
301
.
18.
Kuhn
,
A.
,
Scheller
,
G.
, and
Schwarz
,
M.
, 1999, “
Primary Stability of Cement-Free Press-Fit Acetabulum Cups. In Vitro Displacement Studies
,”
Biomed. Tech. (Berl.)
,
44
(
12
), pp.
356
359
.
19.
Macdonald
,
W.
,
Carlsson
,
L. V.
,
Charnley
,
G. J.
, and
Jacobsson
,
C. M.
, 1999, “
Press-Fit Acetabular Cup Fixation: Principles and Testing
,”
Proc. Inst. Mech. Eng. Part H, J. Eng. Med.
213
(
1
), pp.
33
39
.
20.
Schwarz
,
M. L.
,
Scheller
,
G.
, and
Effenberger
,
H.
, 2003, “
Primary Stability of Threaded Cups in THR - An Experimental Study
,”
Biomed. Tech. (Berl.)
,
48
(
12
), pp.
334
338
.
21.
Olory
,
B.
,
Havet
,
E.
,
Gabrion
,
A.
,
Vernois
,
J.
, and
Mertl
,
P.
, 2004, “
Comparative In Vitro Assessment of the Primary Stability of Cementless Press-Fit Acetabular Cups
,”
Acta Orthop. Belg.
,
70
(
1
), pp.
31
37
.
22.
Wetzel
,
R.
,
Simnacher
,
M.
, and
Scheller
,
G.
, 2005, “
Initial Stability of Press-Fit Acetabular Cups - An In-Vitro Study
,”
Biomed. Tech. (Berl.)
,
50
(
12
), pp.
400
403
.
23.
Schreiner
,
U.
,
Simnacher
,
M.
,
Scheller
,
G.
, and
Scharf
,
H. P.
, 2007, “
The Influence of Different Surface Treatments on the Primary Stability of Cementless Acetabular Cups: An In Vitro Study
,”
Biomed. Tech. (Berl.)
,
52
(
3
), pp.
243
247
.
24.
Markel
,
D. C.
,
Hora
,
N.
, and
Grimm
,
M.
, 2002, “
Press-Fit Stability of Uncemented Hemispheric Acetabular Components: A Comparison of Three Porous Coating Systems
,”
Int. Orthop.
,
26
(
2
), pp.
72
75
.
25.
Hsu
,
J. T.
,
Chang
,
C. H.
,
An
,
K. N.
,
Zobitz
,
M. E.
,
Phimolsarnti
,
R.
,
Hugate
,
R. R.
, and
Lai
,
K. A.
, 2007, “
Effects of Screw Eccentricity on the Initial Stability of the Acetabular Cup
,”
Int. Orthop.
,
31
(
4
), pp.
451
455
.
26.
Hsu
,
J. T.
, and
Lin
,
D. J.
, 2009, “
Effects of Screw Eccentricity on the Initial Stability of the Acetabular Cup in Artificial Foam Bone of Different Qualities
,”
Artif. Organs
,
34
(
1
), pp.
10
16
.
27.
Nicholas
,
R. M.
,
Orr
,
J. F.
,
Mollan
,
R. A.
,
Calderwood
,
J. W.
,
Nixon
,
J. R.
, and
Watson
,
P.
, 1990, “
Dislocation of Total Hip Replacements. A Comparative Study of Standard, Long Posterior Wall and Augmented Acetabular Components
,”
J. Bone Jt. Surg. Br.
,
72
(
3
), pp.
418
422
.
28.
Bader
,
R.
,
Scholz
,
R.
,
Steinhauser
,
E.
,
Busch
,
R.
, and
Mittelmeier
,
W.
, 2004, “
Method for the Evaluation of Factors Influencing the Dislocation Stability of Total Hip Endoprothesis
,”
Biomed. Tech. (Berl.)
,
49
(
5
), pp.
137
144
.
29.
Bader
,
R.
,
Steinhauser
,
E.
,
Zimmermann
,
S.
,
Mittelmeier
,
W.
,
Scholz
,
R.
, and
Busch
,
R.
, 2004, “
Differences Between the Wear Couples Metal-On-Polyethylene and Ceramic-On-Ceramic in the Stability Against Dislocation of Total Hip Replacement
,”
J. Mater. Sci. Mater. Med.
,
15
(
6
), pp.
711
718
.
30.
Bader
,
R.
,
Scholz
,
R.
,
Steinhauser
,
E.
,
Zimmermann
,
S.
,
Busch
,
R.
, and
Mittelmeier
,
W.
, 2004, “
The Influence of Head and Neck Geometry on Stability of Total Hip Replacement: A Mechanical Test Study
,”
Acta Orthop. Scand.
,
75
(
4
), pp.
415
421
.
31.
Bader
,
R.
,
Steinhauser
,
E.
,
Scholz
,
R.
,
Simnacher
,
M.
, and
Mittelmeier
,
W.
, 2004, “
Experimental Analysis of Neutral, Asymmetric and Constraint Liners for Total Hip Replacement: Investigation of Range of Motion and Protection Against Joint Instability
,”
Z. Orthop. Ihre Grenzgeb.
,
142
(
5
), pp.
577
585
.
32.
Scifert
,
C. F.
,
Brown
,
T. D.
,
Pedersen
,
D. R.
, and
Callaghan
,
J. J.
, 1998, “
A Finite Element Analysis of Factors Influencing Total Hip Dislocation
,”
Clin. Orthop. Relat. Res.
, (
355
), pp.
152
162
.
33.
Scifert
,
C. F.
,
Brown
,
T. D.
, and
Lipman
,
J.D.
, 1999, “
Finite Element Analysis of a Novel Design Approach to Resisting Total Hip Dislocation
,”
Clin. Biomech. (Bristol, Avon)
,
14
(
10
), pp.
697
703
.
34.
Stewart
,
K. J.
,
Pedersen
,
D. R.
,
Callaghan
,
J. J.
, and
Brown
,
T. D.
, 2004, “
Implementing Capsule Representation in a Total Hip Dislocation Finite Element Model
,”
Iowa Orthop. J.
,
24
, pp.
1
8
.
35.
Kluess
,
D.
,
Martin
,
H.
,
Mittelmeier
,
W.
,
Schmitz
,
K. P.
, and
Bader
,
R.
, 2007, “
Influence of Femoral Head Size on Impingement, Dislocation and Stress Distribution in Total Hip Replacement
,”
Med. Eng. Phys.
,
29
(
4
), pp.
465
471
.
36.
Schüller
,
H. M.
,
Dalstra
,
M.
,
Huiskes
,
R.
, and
Marti
,
R. K.
, 1993, “
Total Hip Reconstruction in Acetabular Dysplasia. A Finite Element Study
,”
J. Bone Jt. Surg. Br.
,
75
(
3
), pp.
468
474
.
37.
Thomsen
,
M.
,
Aldinger
,
P.
,
Görtz
,
W.
,
Lukoschek
,
M.
,
Lahmer
,
A.
,
Honl
,
M.
,
Birke
,
A.
,
Nägerl
,
H.
, and
Ewerbeck
,
V.
, 2001, “
The Importance to Generate robot-Assisted Milled Cavities for Total Hip Replacement. A comparative Experimental Study: Manual Versus Robotic Preparation
,“
Unfallchirurg
,
104
(
8
), pp.
692
699
.
38.
O’Connor
,
D. O.
,
Burke
,
D. W.
,
Jasty
,
M.
,
Sedlacek
,
R. C.
, and
Harris
,
W. H.
, 1996, “
In Vitro Measurement of Strain in the Bone Cement Surrounding the Femoral Component of Total Hip Replacements During Simulated Gait and Stair-Climbing
,”
J. Orthop. Res.
,
14
(
5
), pp.
769
777
.
39.
Cristofolini
,
L.
, and
Viceconti
,
M.
, 2000, “
Development and Validation of a Technique for Strain Measurement Inside Polymethyl Methacrylate
,”
J. Strain Anal. Eng. Des.
,
35
(
1
), pp.
21
33
.
40.
Dalstra
,
M.
,
Huiskes
,
R.
,
Odgaard
,
A.
, and
van Erning
,
L.
, 1993, “
Mechanical and textural properties of pelvic trabecular bone
,”
J. Biomech.
,
26
(
4–5
), pp.
523
535
.
You do not currently have access to this content.