Tortuous blood vessels are often seen in humans in association with thrombosis, atherosclerosis, hypertension, and aging. Vessel tortuosity can cause high fluid shear stress, likely promoting thrombosis. However, the underlying physical mechanisms and microscale processes are poorly understood. Accordingly, the objectives of this study were to develop and use a new computational approach to determine the effects of venule tortuosity and fluid velocity on thrombus initiation. The transport, collision, shear-induced activation, and receptor-ligand adhesion of individual platelets in thrombus formation were simulated using discrete element method. The shear-induced activation model assumed that a platelet became activated if it experienced a shear stress above a relative critical shear stress or if it contacted an activated platelet. Venules of various levels of tortuosity were simulated for a mean flow velocity of 0.10 cm s−1, and a tortuous arteriole was simulated for a mean velocity of 0.47 cm s−1. Our results showed that thrombus was initiated at inner walls in curved regions due to platelet activation in agreement with experimental studies. Increased venule tortuosity modified fluid flow to hasten thrombus initiation. Compared to the same sized venule, flow in the arteriole generated a higher amount of mural thrombi and platelet activation rate. The results suggest that the extent of tortuosity is an important factor in thrombus initiation in microvessels.

References

1.
Vannix
,
R. S.
,
Joergenson
,
E. J.
, and
Carter
,
R.
, 1977, “
Kinking of Internal Carotid-Artery—Clinical Significance and Surgical Management
,”
Am. J. Surg.
,
134
(
1
), pp.
82
89
.
2.
Wolf
,
Y. G.
,
Tillich
,
M.
,
Lee
,
W. A.
,
Rubin
,
G. D.
,
Fogarty
,
T. J.
, and
Zarins
,
C. K.
, 2001, “
Impact of Aortoiliac Tortuosity on Endovascular Repair of Abdominal Aortic Aneurysms: Evaluation of 3D Computer-Based Assessment
,”
J. Vasc. Surg.
,
34
(
4
), pp.
594
599
.
3.
Pancera
,
P.
,
Ribul
,
M.
,
Presciuttini
,
B.
, and
Lechi
,
A.
, 2000, “
Prevalence of Carotid Artery Kinking in 590 Consecutive Subjects Evaluated by Echocolordoppler. Is There a Correlation With Arterial Hypertension?
J. Intern. Med.
,
248
(
1
), pp.
7
12
.
4.
Han
,
H. C.
, 2009, “
Blood Vessel Buckling Within Soft Surrounding Tissue Generates Tortuosity
,”
J. Biomech.
,
42
(
16
), pp.
2797
2801
.
5.
Cabrera
,
M. T.
,
Freedman
,
S. F.
,
Kiely
,
A. E.
,
Chiang
,
M. F.
, and
Wallace
,
D. K.
, 2011, “
Combining ROPtool Measurements of Vascular Tortuosity and Width to Quantify Plus Disease in Retinopathy of Prematurity
,”
J. AAPOS
,
15
(
1
), pp.
40
44
.
6.
Callewaert
,
B. L.
,
Willaert
,
A.
,
Kerstjens-Frederikse
,
W. S.
,
De
Backer
,
J.
,
Devriendt
,
K.
,
Albrecht
,
B.
,
Ramos-Arroyo
,
M. A.
,
Doco-Fenzy
,
M.
,
Hennekam
,
R. C.
,
Pyeritz
,
R. E.
,
Krogmann
,
O. N.
,
Gillessen-kaesbach
,
G.
,
Wakeling
,
E. L.
,
Nik-zainal
,
S.
,
Francannet
,
C.
,
Mauran
,
P.
,
Booth
,
C.
,
Barrow
,
M.
,
Dekens
,
R.
,
Loeys
,
B. L.
,
Coucke
,
P. J.
, and
De Paepe
,
A. M.
, 2008, “
Arterial Tortuosity Syndrome: Clinical and Molecular Findings in 12 Newly Identified Families
,”
Hum. Mutat.
,
29
(
1
), pp.
150
158
.
7.
Schep
,
G.
,
Bender
,
M. H. M.
,
van de Tempel
,
G.
,
Wijn
,
P. F. F.
,
de Vries
,
W. R.
, and
Eikelboom
,
B. C.
, 2002, “
Detection and Treatment of Claudication due to Functional Iliac Obstruction in Top Endurance Athletes: A Prospective Study
,”
Lancet
,
359
(
9305
), pp.
466
473
.
8.
Cartwright
,
M. S.
,
Hickling
,
W. H.
, and
Roach
,
E. S.
, 2006, “
Ischemic Stroke in an Adolescent With Arterial Tortuosity Syndrome
,”
Neurology
,
67
(
2
), pp.
360
361
.
9.
Shireman
,
P. K.
, and
Quinones
,
M. P.
, 2005, “
Differential Necrosis Despite Similar Perfusion in Mouse Strains After Ischemia
,”
J. Surg. Res.
,
129
(
2
), pp.
242
250
.
10.
Wootton
,
D. M.
, and
Ku
,
D. N.
, 1999, “
Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis
,”
Annu. Rev. Biomed. Eng.
,
1
, pp.
299
329
.
11.
Owens
,
A. P.
III
, and
Mackman
,
N.
, 2010, “
Tissue Factor and Thrombosis: The Clot Starts Here
,”
Thromb Haemost
,
104
(
3
), pp.
432
439
.
12.
Sato
,
Y.
, and
Benirschke
,
K.
, 2006, “
Umbilical Arterial Thrombosis With Vascular Wall Necrosis: Clinicopathologic Findings of 11 Cases
,”
Placenta
,
27
(
6–7
), pp.
715
718
.
13.
Cacciapuoti
,
F.
, 2011, “
Some Considerations About the Hypercoagulable States and Their Treatments
,”
Blood Coagul Fibrinolysis
,
22
(
3
), pp.
155
159
.
14.
Liu
,
Q.
,
Mirc
,
D.
, and
Fu
,
B. M.
, 2008, “
Mechanical Mechanisms of Thrombosis in Intact Bent Microvessels of Rat Mesentery
,”
J. Biomech.
,
41
(
12
), pp.
2726
2734
.
15.
Lipowsky
,
H. H.
, 2005, “
Microvascular Rheology and Hemodynamics
,”
Microcirculation
,
12
(
1
), pp.
5
15
.
16.
Gando
,
S.
, 2010, “
Microvascular Thrombosis and Multiple Organ Dysfunction Syndrome
,”
Crit. Care Med.
,
38
(
2 Suppl
), pp.
S35
42
.
17.
Taylor
,
F. B.
, Jr.
, 2001, “
Staging of the Pathophysiologic Responses of the Primate Microvasculature to Escherichia coli and Endotoxin: Examination of the Elements of the Compensated Response and Their Links to the Corresponding Uncompensated Lethal Variants
,”
Crit. Care Med.
,
29
(
7 Suppl
), pp.
S78
89
.
18.
Rumbaut
,
R. E.
,
Slaff
,
D. W.
, and
Burns
,
A. R.
, 2005, “
Microvascular Thrombosis Models in Venules and Arterioles in vivo
,”
Microcirculation
,
12
(
3
), pp.
259
274
.
19.
Chaniotis
,
A. K.
,
Kaiktsis
,
L.
,
Katritsis
,
D.
,
Efstathopoulos
,
E.
,
Pantos
,
I.
, and
Marmarellis
,
V.
, 2010, “
Computational Study of Pulsatile Blood Flow in Prototype Vessel Geometries of Coronary Segments
,”
Phys. Med.
,
26
(
3
), pp.
140
156
.
20.
Bark
,
D. L.
, Jr.
, and
Ku
,
D. N.
, 2010, “
Wall Shear Over High Degree Stenoses Pertinent to Atherothrombosis
,”
J. Biomech
,
43
(
15
), pp.
2970
2977
.
21.
Kaplan
,
A. D.
,
Jaffa
,
A. J.
,
Timor
,
I. E.
, and
Elad
,
D.
, 2010, “
Hemodynamic Analysis of Arterial Blood Flow in the Coiled Umbilical Cord
,”
Reprod. Sci.
,
17
(
3
), pp.
258
268
.
22.
Krishnan
,
S.
,
Udaykumar
,
H. S.
,
Marshall
,
J. S.
, and
Chandran
,
K. B.
, 2006, “
Two-Dimensional Dynamic Simulation of Platelet Activation During Mechanical Heart Valve Closure
,”
Ann. Biomed. Eng.
,
34
(
10
), pp.
1519
1534
.
23.
Basciano
,
C.
,
Kleinstreuer
,
C.
,
Hyun
,
S.
, and
Finol
,
E. A.
, 2011, “
A Relation Between Near-Wall Particle-Hemodynamics and Onset of Thrombus Formation in Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
2010
2026
.
24.
Ouared
,
R.
,
Chopard
,
B.
,
Stahl
,
B.
,
Rufenacht
,
D. A.
,
Yilmaz
,
H.
, and
Courbebaisse
,
G.
, 2008, “
Thrombosis Modeling in Intracranial Aneurysms: A Lattice Boltzmann Numerical Algorithm
,”
Comput. Phys. Commun.
,
179
(
1–3
), pp.
128
131
.
25.
Nobili
,
M.
,
Sheriff
,
J.
,
Morbiducci
,
U.
,
Redaelli
,
A.
, and
Bluestein
,
D.
, 2008, “
Platelet Activation Due to Hemodynamic Shear Stresses: Damage Accumulation Model and Comparison to In Vitro Measurements
,”
ASAIO J.
,
54
(
1
), pp.
64
72
.
26.
Govindarajan
,
V.
Udaykumar
,
H. S.
, and
Chandran
,
K. B.
, 2009, “
Two-Dimensional Simulation of Flow and Platelet Dynamics in the Hinge Region of a Mechanical Heart Valve
,”
ASME J. Biomech. Eng.
,
131
(
3
), p.
031002
.
27.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Nobili
,
M.
,
Massai
,
D.
,
Montevecchi
,
F. M.
,
Bluestein
,
D.
, and
Redaelli
,
A.
, 2009, “
Blood Damage Safety of Prosthetic Heart Valves. Shear-Induced Platelet Activation and Local Flow Dynamics: A Fluid-Structure Interaction Approach
,”
J. Biomech.
,
42
(
12
), pp.
1952
1960
.
28.
Filipovic
,
N.
,
Ravnic
,
D.
,
Kojic
,
M.
,
Mentzer
,
S. J.
,
Haber
,
S.
, and
Tsuda
,
A.
, 2008, “
Interactions of Blood Cell Constituents: Experimental Investigation and Computational Modeling by Discrete Particle Dynamics Algorithm
,”
Microvasc. Res.
,
75
(
2
), pp.
279
284
.
29.
Kamada
,
H.
,
Tsubota
,
K.
,
Nakamura
,
M.
,
Wada
,
S.
,
Ishikawa
,
T.
, and
Yamaguchi
,
T.
, 2010, “
A Three-Dimensional Particle Simulation of the Formation and Collapse of a Primary Thrombus
,”
Int. J. Numer. Methods Biol.
,
26
(
3–4
), pp.
488
500
.
30.
Mori
,
D.
,
Yano
,
K.
,
Tsubota
,
K.
,
Ishikawa
,
T.
,
Wada
,
S.
, and
Yamaguchi
,
T.
, 2008, “
Computational Study on Effect of Red Blood Cells on Primary Thrombus Formation
,”
Thromb. Res.
,
123
(
1
), pp.
114
121
.
31.
Pivkin
,
I. V.
,
Richardson
,
P. D.
, and
Karniadakis
,
G.
, 2006, “
Blood Flow Velocity Effects and Role of Activation Delay Time on Growth and Form of Platelet Thrombi
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
46
), pp.
17164
17169
.
32.
Xu
,
Z. L.
,
Chen
,
N.
,
Shadden
,
S. C.
,
Marsden
,
J. E.
,
Kamocka
,
M. M.
,
Rosen
,
E. D.
, and
Alber
,
M.
, 2009, “
Study of Blood Flow Impact on Growth of Thrombi Using a Multiscale Model
,”
Soft Matter
,
5
(
4
), pp.
769
779
.
33.
Chesnutt
,
J. K. W.
, and
Marshall
,
J. S.
, 2009, “
Effect of Particle Collisions and Aggregation on Red Blood Cell Passage Through a Bifurcation
,”
Microvasc. Res.
,
78
(
3
), pp.
301
313
.
34.
Lai
,
Y. G.
, 2000, “
Unstructured Grid Arbitrarily Shaped Element Method for Fluid Flow Simulation
,”
AIAA J.
,
38
(
12
), pp.
2246
2252
.
35.
Issa
,
R. I.
, 1986, “
Solution of the Implicitly Discretized Fluid–Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.
36.
Allievi
,
A.
, and
Bermejo
,
R.
, 1997, “
A Generalized Particle Search-Locate Algorithm for Arbitrary Grids
,”
J. Comput. Phys.
,
132
(
2
), pp.
157
166
.
37.
Sethian
,
J. A.
, 1996, “
A Fast Marching Level Set Method for Monotonically Advancing Fronts
,”
Proc. Natl. Acad. Sci. U.S.A.
,
93
(
4
), pp.
1591
1595
.
38.
Bluestein
,
D.
,
Niu
,
L.
,
Schoephoerster
,
R. T.
, and
Dewanjee
,
M. K.
, 1997, “
Fluid Mechanics of Arterial Stenosis: Relationship to the Development of Mural Thrombus
,”
Ann. Biomed. Eng.
,
25
(
2
), pp.
344
356
.
39.
Chesnutt
,
J. K. W.
, and
Marshall
,
J. S.
, 2009, “
Blood Cell Transport and Aggregation Using Discrete Ellipsoidal Particles
,”
Comput. Fluids
,
38
(
9
), pp.
1782
1794
.
40.
Mody
,
N. A.
, and
King
,
M. R.
, 2008, “
Platelet Adhesive Dynamics. II. High Shear-Induced Transient Aggregation via GPIbalpha-vWF-GPIbalpha Bridging
,”
Biophys. J.
,
95
(
5
), pp.
2556
2574
.
41.
Fogelson
,
A. L.
, and
Guy
,
R. D.
, 2008, “
Immersed-Boundary-Type Models of Intravascular Platelet Aggregation
,”
Comput. Method Appl. M
,
197
(
25–28
), pp.
2087
2104
.
42.
Di Felice
,
R.
, 1994, “
The Voidage Function for Fluid-Particle Interaction Systems
,”
Int. J. Multiphas. Flow
,
20
(
1
), pp.
153
159
.
43.
Happel
,
J.
, and
Brenner
,
H.
, 1983,
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
,
M.
Nijhoff
, ed.,
Kluwer
,
Boston, MA
.
44.
Tsuji
,
Y.
,
Tanaka
,
T.
, and
Ishida
,
T.
, 1992, “
Lagrangian Numerical-Simulation of Plug Flow of Cohesionless Particles in a Horizontal Pipe
,”
Powder Technol.
,
71
(
3
), pp.
239
250
.
45.
Dominik
,
C.
, and
Tielens
,
A. G. G. M.
, 1995, “
Resistance to Rolling in the Adhesive Contact of 2 Elastic Spheres
,”
Philos. Mag. A
,
72
(
3
), pp.
783
803
.
46.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
, 1971, “
Surface Energy and Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
,
324
(
1558
), pp.
301
313.
47.
Bell
,
G. I.
,
Dembo
,
M.
, and
Bongrand
,
P.
, 1984, “
Cell Adhesion. Competition Between Nonspecific Repulsion and Specific Bonding
,”
Biophys. J.
,
45
(
6
), pp.
1051
1064
.
48.
Bell
,
G. I.
, 1978, “
Models for the Specific Adhesion of Cells to Cells
,”
Science
,
200
(
4342
), pp.
618
627
.
49.
Dembo
,
M.
,
Torney
,
D. C.
,
Saxman
,
K.
, and
Hammer
,
D.
, 1988, “
The Reaction-Limited Kinetics of Membrane-to-Surface Adhesion and Detachment
,”
Proc. R. Soc. London, Ser. B
,
234
(
1274
), pp.
55
83
.
50.
Chokshi
,
A.
,
Tielens
,
A. G. G. M.
, and
Hollenbach
,
D.
, 1993, “
Dust Coagulation
,”
Astrophys. J.
,
407
(
2
), pp.
806
819
.
51.
Para
,
A.
,
Bark
,
D.
,
Lin
,
A.
, and
Ku
,
D.
, 2011, “
Rapid Platelet Accumulation Leading to Thrombotic Occlusion
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
1961
1971
.
52.
Jesty
,
J.
,
Yin
,
W.
,
Perrotta
,
P.
, and
Bluestein
,
D.
, 2003, “
Platelet Activation in a Circulating Flow Loop: Combined Effects of Shear Stress and Exposure Time
,”
Platelets
,
14
(
3
), pp.
143
149
.
53.
Alemu
,
Y.
, and
Bluestein
,
D.
, 2007, “
Flow-Induced Platelet Activation and Damage Accumulation in a Mechanical Heart Valve: Numerical Studies
,”
Artif. Organs
,
31
(
9
), pp.
677
688
.
54.
Kolesnikova
,
I. V.
,
Potapov
,
S. V.
,
Yurkin
,
M. A.
,
Hoekstra
,
A. G.
,
Maltsev
,
V. P.
, and
Semyanov
,
K. A.
, 2006, “
Determination of Volume, Shape and Refractive Index of Individual Blood Platelets
,”
J. Quant. Spectrosc. Radiat. Transf.
,
102
(
1
), pp.
37
45
.
55.
Michelson
,
A. D.
, 2007,
Platelets
,
Academic Press/Elsevier
,
Boston
.
56.
Evans
,
E.
, and
Leung
,
A.
, 1984, “
Adhesivity and Rigidity of Erythrocyte Membrane in Relation to Wheat Germ Agglutinin Binding
,”
J. Cell Biol.
,
98
(
4
), pp.
1201
1208
.
57.
Reininger
,
A. J.
,
Heijnen
,
H. F.
,
Schumann
,
H.
,
Specht
,
H. M.
,
Schramm
,
W.
, and
Ruggeri
,
Z. M.
, 2006, “
Mechanism of Platelet Adhesion to von Willebrand Factor and Microparticle Formation Under High Shear Stress
,”
Blood
,
107
(
9
), pp.
3537
3545
.
58.
Hammer
,
D. A.
, and
Apte
,
S. M.
, 1992, “
Simulation of Cell Rolling and Adhesion on Surfaces in Shear Flow: General Results and Analysis of Selectin-Mediated Neutrophil Adhesion
,”
Biophys. J.
,
63
(
1
), pp.
35
57
.
59.
Ward
,
M. D.
, and
Hammer
,
D. A.
, 1993, “
A Theoretical Analysis for the Effect of Focal Contact Formation on Cell-Substrate Attachment Strength
,”
Biophys. J.
,
64
(
3
), pp.
936
959
.
You do not currently have access to this content.