It is widely recognized that the tracking of patella is strongly influenced by the geometry of the trochlear groove. Nonetheless, quantitative baseline data regarding correlation between the three-dimensional geometry of the trochlear groove and patellar tracking under in vivo weight-bearing conditions are not available. A combined magnetic resonance and dual fluoroscopic imaging technique, coupled with multivariate regression analysis, was used to quantify the relationship between trochlear groove geometry (sulcus location, bisector angle, and coronal plane angle) and in vivo patellar tracking (shift, tilt, and rotation) during weight-bearing knee flexion. The results showed that in the transverse plane, patellar shift was strongly correlated (correlation coefficient R=0.86, p<0.001) to mediolateral location of the trochlear sulcus (raw regression coefficient βraw=0.62) and the trochlear bisector angle (βraw=0.31). Similarly, patellar tilt showed a significant association with the trochlear bisector angle (R=0.45, p<0.001, and βraw=0.60). However, in the coronal plane patellar rotation was poorly correlated with its matching geometric parameter, namely, the coronal plane angle of the trochlea (R=0.26, p=0.01, βraw=0.08). The geometry of the trochlear groove in the transverse plane of the femur had significant effect on the transverse plane motion of the patella (patellar shift and tilt) under in vivo weight-bearing conditions. However, patellar rotation in the coronal plane was weakly correlated with the trochlear geometry.

1.
Ahmed
,
A. M.
, and
Duncan
,
N. A.
, 2000, “
Correlation of Patellar Tracking Pattern With Trochlear and Retropatellar Surface Topographies
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
6
), pp.
652
660
.
2.
Goh
,
J. C.
,
Lee
,
P. Y.
, and
Bose
,
K.
, 1995, “
A Cadaver Study of the Function of the Oblique Part of Vastus Medialis
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
77
(
2
), pp.
225
231
.
3.
Mizuno
,
Y.
,
Kumagai
,
M.
,
Mattessich
,
S. M.
,
Elias
,
J. J.
,
Ramrattan
,
N.
,
Cosgarea
,
A. J.
, and
Chao
,
E. Y.
, 2001, “
Q-Angle Influences Tibiofemoral and Patellofemoral Kinematics
,”
J. Orthop. Res.
0736-0266,
19
(
5
), pp.
834
840
.
4.
Heegaard
,
J.
,
Leyvraz
,
P. F.
,
Van Kampen
,
A.
,
Rakotomanana
,
L.
,
Rubin
,
P. J.
, and
Blankevoort
,
L.
, 1994, “
Influence of Soft Structures on Patellar Three-Dimensional Tracking
,”
Clin. Orthop. Relat. Res.
0009-921X,
299
, pp.
235
243
.
5.
Ostermeier
,
S.
,
Holst
,
M.
,
Hurschler
,
C.
,
Windhagen
,
H.
, and
Stukenborg-Colsman
,
C.
, 2007, “
Dynamic Measurement of Patellofemoral Kinematics and Contact Pressure After Lateral Retinacular Release: An In Vitro Study
,”
Knee Surg. Sports Traumatol. Arthrosc.
0942-2056,
15
(
5
), pp.
547
554
.
6.
van Kampen
,
A.
, and
Huiskes
,
R.
, 1990, “
The Three-Dimensional Tracking Pattern of the Human Patella
,”
J. Orthop. Res.
0736-0266,
8
(
3
), pp.
372
382
.
7.
Hefzy
,
M. S.
,
Jackson
,
W. T.
,
Saddemi
,
S. R.
, and
Hsieh
,
Y. F.
, 1992, “
Effects of Tibial Rotations on Patellar Tracking and Patello-Femoral Contact Areas
,”
ASME J. Biomed. Eng.
,
14
(
4
), pp.
329
343
.
8.
Li
,
G.
,
Papannagari
,
R.
,
Nha
,
K. W.
,
Defrate
,
L. E.
,
Gill
,
T. J.
, and
Rubash
,
H. E.
, 2007, “
The Coupled Motion of the Femur and Patella During In Vivo Weightbearing Knee Flexion
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
6
), pp.
937
943
.
9.
Amis
,
A. A.
, 2007, “
Current Concepts on Anatomy and Biomechanics of Patellar Stability
,”
Sports Med. Arthrosc. Review
,
15
(
2
), pp.
48
56
.
10.
Senavongse
,
W.
, and
Amis
,
A. A.
, 2005, “
The Effects of Articular, Retinacular, or Muscular Deficiencies on Patellofemoral Joint Stability
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
87-B
(
4
), pp.
577
582
.
11.
Amis
,
A. A.
,
Oguz
,
C.
,
Bull
,
A. M.
,
Senavongse
,
W.
, and
Dejour
,
D.
, 2008, “
The Effect of Trochleoplasty on Patellar Stability and Kinematics: A Biomechanical Study In Vitro
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
90-B
(
7
), pp.
864
869
.
12.
Jafari
,
A.
,
Farahmand
,
F.
, and
Meghdari
,
A.
, 2008, “
The Effects of Trochlear Groove Geometry on Patellofemoral Joint Stability–A Computer Model Study
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
222
(
1
), pp.
75
88
.
13.
Varadarajan
,
K. M.
,
Harry
,
R. E.
,
Johnson
,
T.
, and
Li
,
G.
, 2009, “
Can In Vitro Systems Capture the Characteristic Differences Between the Flexion-Extension Kinematics of the Healthy and TKA Knee?
,”
Med. Eng. Phys.
1350-4533,
31
(
8
), pp.
899
906
.
14.
Shih
,
Y. F.
,
Bull
,
A. M.
,
McGregor
,
A. H.
, and
Amis
,
A. A.
, 2004, “
Active Patellar Tracking Measurement: A Novel Device Using Ultrasound
,”
Am. J. Sports Med.
0363-5465,
32
(
5
), pp.
1209
1217
.
15.
Powers
,
C. M.
,
Ward
,
S. R.
,
Fredericson
,
M.
,
Guillet
,
M.
, and
Shellock
,
F. G.
, 2003, “
Patellofemoral Kinematics During Weight-Bearing and Non-Weight-Bearing Knee Extension in Persons With Lateral Subluxation of the Patella: A Preliminary Study
,”
J. Orthop. Sports Phys. Ther.
0190-6011,
33
(
11
), pp.
677
685
.
16.
Van de Velde
,
S. K.
,
Gill
,
T. J.
,
DeFrate
,
L. E.
,
Papannagari
,
R.
, and
Li
,
G.
, 2008, “
The Effect of Anterior Cruciate Ligament Deficiency and Reconstruction on the Patellofemoral Joint
,”
Am. J. Sports Med.
0363-5465,
36
(
6
), pp.
1150
1159
.
17.
Li
,
G.
,
Defrate
,
L. E.
,
Park
,
S. E.
,
Gill
,
T. J.
, and
Rubash
,
H. E.
, 2005, “
In Vivo Articular Cartilage Contact Kinematics of the Knee: An Investigation Using Dual-Orthogonal Fluoroscopy and Magnetic Resonance Image-Based Computer Models
,”
Am. J. Sports Med.
0363-5465,
33
(
1
), pp.
102
107
.
18.
Nha
,
K. W.
,
Papannagari
,
R.
,
Gill
,
T. J.
,
Van De Velde
,
S. K.
,
Freiberg
,
A. A.
,
Rubash
,
H. E.
, and
Li
,
G.
, 2008, “
In Vivo Patellar Tracking: Clinical Motions and Patellofemoral Indices
,”
J. Orthop. Res.
0736-0266,
26
(
8
), pp.
1067
1074
.
19.
Yamada
,
Y.
,
Toritsuka
,
Y.
,
Yoshikawa
,
H.
,
Sugamoto
,
K.
,
Horibe
,
S.
, and
Shino
,
K.
, 2007, “
Morphological Analysis of the Femoral Trochlea in Patients With Recurrent Dislocation of the Patella Using Three-Dimensional Computer Models
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
89-B
(
6
), pp.
746
751
.
20.
Varadarajan
,
K. M.
,
Gill
,
T. J.
,
Freiberg
,
A. A.
,
Rubash
,
H. E.
, and
Li
,
G.
, 2009, “
Gender Differences in Trochlear Groove Orientation and Rotational Kinematics of Human Knees
,”
J. Orthop. Res.
0736-0266,
27
(
7
), pp.
871
878
.
21.
Anouchi
,
Y. S.
,
Whiteside
,
L. A.
,
Kaiser
,
A. D.
, and
Milliano
,
M. T.
, 1993, “
The Effects of Axial Rotational Alignment of the Femoral Component on Knee Stability and Patellar Tracking in Total Knee Arthroplasty Demonstrated on Autopsy Specimens
,”
Clin. Orthop. Relat. Res.
0009-921X,
287
, pp.
170
177
.
22.
Nagamine
,
R.
,
Otani
,
T.
,
White
,
S. E.
,
Mccarthy
,
D. S.
, and
Whiteside
,
L. A.
, 1995, “
Patellar Tracking Measurement in the Normal Knee
,”
J. Orthop. Res.
0736-0266,
13
(
1
), pp.
115
122
.
23.
Shih
,
Y. F.
,
Bull
,
A. M.
, and
Amis
,
A. A.
, 2004, “
The Cartilaginous and Osseous Geometry of the Femoral Trochlear Groove
,”
Knee Surg. Sports Traumatol. Arthrosc
0942-2056,
12
(
4
), pp.
300
306
.
24.
Rhoads
,
D. D.
,
Noble
,
P. C.
,
Reuben
,
J. D.
,
Mahoney
,
O. M.
, and
Tullos
,
H. S.
, 1990, “
The Effect of Femoral Component Position on Patellar Tracking After Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
0009-921X,
260
, pp.
43
51
.
25.
Armstrong
,
A. D.
,
Brien
,
H. J.
,
Dunning
,
C. E.
,
King
,
G. J.
,
Johnson
,
J. A.
, and
Chess
,
D. G.
, 2003, “
Patellar Position After Total Knee Arthroplasty: Influence of Femoral Component Malposition
,”
J. Arthroplasty
0883-5403,
18
(
4
), pp.
458
465
.
26.
Nagamine
,
R.
,
Whiteside
,
L. A.
,
Otani
,
T.
,
White
,
S. E.
, and
Mccarthy
,
D. S.
, 1996, “
Effect of Medial Displacement of the Tibial Tubercle on Patellar Position After Rotational Malposition of the Femoral Component in Total Knee Arthroplasty
,”
J. Arthroplasty
0883-5403,
11
(
1
), pp.
104
110
.
27.
Rhoads
,
D. D.
,
Noble
,
P. C.
,
Reuben
,
J. D.
, and
Tullos
,
H. S.
, 1993, “
The Effect of Femoral Component Position on the Kinematics of Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
0009-921X,
286
, pp.
122
129
.
28.
Kessler
,
O.
,
Patil
,
S.
,
Colwell
,
C. W.
, Jr.
, and
D’lima
,
D. D.
, 2008, “
The Effect of Femoral Component Malrotation on Patellar Biomechanics
,”
J. Biomech.
0021-9290,
41
(
16
), pp.
3332
3339
.
29.
Pagnano
,
M. W.
,
Trousdale
,
R. T.
,
Stuart
,
M. J.
,
Hanssen
,
A. D.
, and
Jacofsky
,
D. J.
, 2004, “
Rotating Platform Knees Did Not Improve Patellar Tracking: A Prospective, Randomized Study of 240 Primary Total Knee Arthroplasties
,”
Clin. Orthop. Relat. Res.
0009-921X,
428
, pp.
221
227
.
30.
Yang
,
C. C.
,
Mcfadden
,
L. A.
,
Dennis
,
D. A.
,
Kim
,
R. H.
, and
Sharma
,
A.
, 2008, “
Lateral Retinacular Release Rates in Mobile- Versus Fixed-Bearing TKA
,”
Clin. Orthop. Relat. Res.
0009-921X,
466
(
11
), pp.
2656
2661
.
31.
Conley
,
S.
,
Rosenberg
,
A.
, and
Crowninshield
,
R.
, 2007, “
The Female Knee: Anatomic Variations
,”
J. Am. Acad. Orthop. Surg.
1067-151X,
15
, pp.
S31
S36
.
You do not currently have access to this content.