Inclusion of multi-walled carbon nanotubes (MWNTs) into tissue prior to laser therapy has the potential to enhance the selectivity and effectiveness of cancer therapy by providing greater and more controlled thermal deposition. The purpose of this study was to investigate the optical and thermal response of tissue representative phantoms containing MWNTs to optical radiation. Tissue representative phantoms 20 mm in diameter and 1 mm in thickness were created from sodium alginate. Following the inclusion of MWNTs (900 nm in length, 40–60 nm in diameter) in phantoms, the distribution of MWNTs was observed using transmission electron microscopy. A predominantly, evenly dispersed and randomly oriented distribution of MWNTs was observed with a rare presence of MWNT clustering or clumping. In order to characterize the response of MWNT inclusion on optical properties of phantoms, the transmittance and reflectance spectra of phantoms with and without MWNT inclusion were measured with a spectrophotometer over a wavelength range of 200–1400 nm. Inclusion of MWNTs in phantoms dramatically enhanced light absorption across the entire wavelength range as evidenced by a diminished transmittance and reflectance compared with phantoms without MWNTs. In order to evaluate the spatiotemporal temperature distribution associated with laser irradiation of phantoms with and without MWNTs, the temperature was measured at discrete radial distances from the center of the incident laser beam using thermocouples. The rate of temperature increase and peak temperature for phantoms containing MWNTs was much greater compared with phantoms without MWNTs at all measurement locations. In conclusion, MWNT inclusion in tissue phantoms increases the optical absorption and temperature elevation, which may enable more effective photothermal therapies of human disease utilizing lasers.

1.
Gittes
,
R.
, 1991, “
Carcinoma of the Prostate
,”
N. Engl. J. Med.
0028-4793,
324
, pp.
236
245
.
2.
Kiang
,
J. G.
, and
Tsokos
,
G. C.
, 1998, “
Heat Shock Protein 70 kDa: Molecular Biology, Biochemistry, and Physiology
,”
Pharmacol. Ther.
0163-7258,
80
, pp.
183
201
.
3.
1991,
Apoptosis: The Molecular Basis of Cell Death
,
L. D.
Tomei
and
F. O.
Cope
, eds.,
Cold Spring Harbor Laboratory
,
Plainview, NY
.
4.
Calderwood
,
S. K.
,
Khaleque
,
M. A.
,
Sawyer
,
D. B.
, and
Ciocca
,
D. R.
, 2006, “
Heat Shock Proteins in Cancer: Chaperones of Tumorigenesis
,”
Trends Biochem. Sci.
0167-7640,
31
, pp.
164
72
.
5.
Gibbons
,
N. B.
,
Watson
,
R. W.
,
Coffey
,
R. N.
,
Brady
,
H. P.
, and
Fitzpatrick
,
J. M.
, 2000, “
Heat-Shock Proteins Inhibit Induction of Prostate Cancer Cell Apoptosis. Prostate
,”
Prostate
0270-4137,
45
, pp.
58
65
.
6.
Levine
,
A. J.
,
Momand
,
J.
, and
Finlay
,
C. A.
, 1991, “
The p53 Tumour Suppressor Gene
,”
Nature (London)
0028-0836,
351
, pp.
453
456
.
7.
Sõti
,
C.
,
Nagy
,
E.
,
Giricz
,
Z.
,
Vigh
,
L.
,
Csermely
,
P.
, and
Ferdinandy
,
P.
, 2005, “
Heat Shock Proteins as Emerging Therapeutic Targets
,”
Br. J. Pharmacol.
0007-1188,
146
, pp.
769
780
.
8.
Georgopoulos
,
C.
, and
Welch
,
W. J.
, 1993, “
Role of the Major Heat Shock Proteins as Molecular Chaperones
,”
Annu. Rev. Cell Biol.
0743-4634,
9
, pp.
601
634
.
9.
Martin
,
J.
,
Horwich
,
A. L.
, and
Hartl
,
F. U.
, 1992, “
Prevention of Protein Denaturation Under Heat Stress by the Chaperonin HSP60
,”
Science
0036-8075,
258
, pp.
995
998
.
10.
Wiech
,
H.
,
Buchner
,
J.
,
Zimmermann
,
R.
, and
Jakob
,
U.
, 1992, “
HSP90 Chaperones Protein Folding In Vitro
,”
Nature (London)
0028-0836,
358
, pp.
169
170
.
11.
Ciocca
,
D. R.
,
Clark
,
G. M.
,
Tandon
,
A. K.
,
Fuqua
,
S. A.
,
Welch
,
W. J.
, and
McGuire
,
W. L.
, 1993, “
Heat Shock Protein HSP70 in Patients With Axillary Lymph Node-Negative Breast Cancer: Prognostic Implications
,”
J. Natl. Cancer Inst.
0027-8874,
85
, pp.
570
574
.
12.
Rylander
,
M.
,
Feng
,
Y.
, and
Diller
,
K.
, 2006, “
Optimizing Heat Shock Protein Expression Induced Byprostate Cancer Laser Therapy Through Predictive Computational Models
,”
J. Biomed. Opt.
1083-3668,
11
(
4
), p.
041113
.
13.
Madersbacher
,
S.
,
Grobl
,
M.
,
Kramer
,
G.
,
Dirnhofer
,
S.
,
Steiner
,
G.
, and
Marberger
,
M.
, 1998, “
Regulation of Heat Shock Protein 27 Expression of Prostatic Cells in Response to Heat Treatment
,”
Prostate
0270-4137,
37
, pp.
174
181
.
14.
Roigas
,
J.
,
Wallen
,
E. S.
,
Loening
,
S. A.
, and
Moseley
,
P. L.
, 1998, “
Effects of Combined Treatment of Chemotherapeutics and Hyperthermia on Survival and the Regulation of Heat Shock Proteins in Dunning R3327 Prostate Carcinoma Cells
,”
Prostate
0270-4137,
34
, pp.
195
202
.
15.
Poole
,
D.
, 2003,
Introduction to Nanotechnology
,
Wiley
,
Hoboken, NJ
.
16.
Anderson
,
R.
, and
John
,
A.
, 1981, “
The Optics of Human Skin
,”
J. Invest. Dermatol.
0022-202X,
77
, pp.
13
19
.
17.
Fisher
,
J.
, and
Rylander
,
M.
, 2008, “
Effective Cancer Laser Therapy Design Through the Integration of Nanotechnology and Computational Treatment Planning Model
,”
Proc. SPIE
0277-786X,
6869
, pp.
1
11
.
18.
Webster
,
S.
,
Maultzsch
,
J.
,
Thomsen
,
C.
,
Liu
,
J.
,
Czerw
,
R.
,
Terrones
,
M.
,
Adar
,
F.
,
John
,
C.
,
Whitely
,
A.
, and
Carroll
,
L.
, 2003, “
Raman Characterization of Nitrogen Doped Multiwalled Carbon Nanotubes
,”
MRS Symposium Proceedings
,
P.
Bernier
,
D.
Carroll
,
G. T.
Kim
, and
S.
Roth
, eds.,
Materials Research Society
,
Warrendale, PA
, Vol.
772
, pp.
129
134
.
19.
Xu
,
J.
,
Xiao
,
M.
,
Czerw
,
R.
, and
Carroll
,
L.
, 2004, “
Optical Limiting and Enhanced Optical Nonlinearity in Doped Carbon Nanotubes
,”
Chem. Phys. Lett.
0009-2614,
389
, pp.
247
250
.
20.
Cheng
,
C.
,
Muller
,
K.
,
Koziol
,
K.
,
Skepper
,
J.
,
Midgley
,
P.
,
Welland
,
M.
, and
Porter
,
A.
, 2009, “
Toxicity and Imaging of Multi-Walled Carbon Nanotubes in Human Macrophages Cells
,”
Biomaterials
0142-9612,
30
, pp.
4152
4160
.
21.
Monteiro-Riviere
,
N.
,
Nemanich
,
R.
,
Inman
,
A.
,
Wang
,
Y.
, and
Riviere
,
J.
, 2005, “
Multi-Walled Carbon Nanotube Interactions With Human Epidermal Keratinocytes
,”
Toxicol. Lett.
0378-4274,
155
, pp.
377
384
.
22.
Guo
,
J.
,
Zhang
,
X.
,
Li
,
Q.
, and
Li
,
W.
, 2007, “
Biodistribution of Functionalized Multiwall Carbon Nanotubes in Mice
,”
Nucl. Med. Biol.
0969-8051,
34
, pp.
579
583
.
23.
Liu
,
Z.
,
Cai
,
W.
,
He
,
L.
,
Nakayama
,
N.
,
Chen
,
K.
,
Sun
,
X.
, and
Dai
,
H.
, 2007, “
In Vivo Biodistribution and Highly Efficient Tumor Targeting of Carbon Nanotubes in Mice
,”
Nat. Nanotechnol.
1748-3387,
2
, pp.
47
52
.
24.
Saltiel
,
C.
, and
Manickavasagam
,
S.
, 2005, “
Light-Scattering and Dispersion Behavior of Multiwalled Carbon Nanotubes
,”
J. Opt. Soc. Am. A Opt. Image Sci. Vis
1084-7529,
22
, pp.
1546
1554
.
25.
Pal
,
A.
, and
Pal
,
T.
, 2005, “
Preparation of Nanosized Gold Nanoparticle in a Biopolymer Using UV Photosctivation
,”
J. Colloid Interface Sci.
0021-9797,
288
, pp.
396
401
.
26.
Yang
,
Y.
, and
Li
,
J.
, 2007, “
Assembled Alginate/Chitosan Nanotubes for Biological Application
,”
Biomaterials
0142-9612,
28
, pp.
3083
3090
.
27.
Torti
,
S.
,
Byrne
,
F.
, and
Whelan
,
O.
, 2007, “
Thermal Ablation Therapeutics Based on CNx Multi-Walled Nanotubes
,”
Int. J. Nanomedicine
1743-5889,
2007:2
(
4
), pp.
707
714
.
28.
Kam
,
N.
,
O’Connell
,
M.
,
Wisdom
,
J.
, and
Dai
,
H.
, 2005, “
Carbon Nanotubes as Multifunctional Biological Transporters and Near-Infrared Agents for Selective Cancer Cell Destruction
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
102
, pp.
11600
11605
.
29.
Burke
,
A.
,
Ding
,
X.
,
Singh
,
R.
,
Kraft
,
R.
,
Levi-Polyachenko
,
N.
,
Rylander
,
M.
,
Szot
,
C.
,
Buchanan
,
C.
,
Whitney
,
J.
,
Fisher
,
J.
,
Hatcher
,
H.
,
Agostino
,
R.
,
Kock
,
N.
,
Ajayan
,
P.
,
Carroll
,
D.
,
Akman
,
S.
,
Torti
,
F.
, and
Torti
,
S.
, 2009, “
Long-Term Survival Following a Single Treatment of Kidney Tumor With Multi-Walled Carbon Nanotubes and Near-Infrared Radiation
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
106
, pp.
12897
12902
.
30.
Torti
,
S.
,
Byrne
,
F.
,
Whelan
,
O.
,
Ucer
,
B.
,
Schmid
,
M.
,
Torti
,
F.
,
Akman
,
F.
,
Levi
,
N.
,
Liu
,
J.
,
Ajayan
,
P.
,
Nalamasu
,
O.
, and
Carroll
,
D.
, 2007, “
Photo-Dynamic Therapeutics Based on CNx Multi-Walled Nanotubes
,”
Nanomedicine
1743-5889,
4
, pp.
707
714
.
31.
Hanson
,
G.
, 2005, “
Fundamental Transmitting Properties of Carbon Nanotube Antennas
,”
IEEE Trans. Antennas Propag.
0018-926X,
53
, pp.
3426
3435
.
32.
Wang
,
Y.
,
Kempa
,
K.
,
Kimball
,
B.
,
Carlson
,
J.
,
Benham
,
G.
,
Li
,
W.
,
Kempa
,
T.
,
Rybczynski
,
J.
,
Herczynski
,
A.
, and
Ren
,
Z.
, 2004, “
Receiving and Transmitting Light-Like Radio Waves: Antenna Effect in Arrays of Aligned Carbon Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
85
, pp.
2607
2609
.
33.
Wong
,
M.
, 2003,
Alginates in Tissue Engineering
,
Humana Press Inc.
,
Totowa, NJ
, Vol.
238
, pp.
77
86
.
34.
Fisher
,
F.
, and
Rylander
,
M.
, 2008, “
Effective Cancer Laser Therapy Design Through the Integration of Nanotechnology and Computational Treatment Planning Models
,”
Proc. SPIE
0277-786X,
6869
, pp.
68690D
.
35.
Yang
,
L.
,
Zhang
,
B.
, and
Zhang
,
L.
, 2007, “
Amphiphilic Cholesteryl Grafted Sodium Alginate Derivative: Synthesis and Self-Assembly in Aqueous Solution
,”
Carbohydr. Polym.
0144-8617,
68
, pp.
218
225
.
36.
Hale
,
G. M.
, and
Query
,
M. R.
, 1973, “
Optical Constants of Water in the 200-nm to 200-μm Wavelength Region
,”
Appl. Opt.
0003-6935,
12
, pp.
555
563
.
37.
Sudimack
,
J.
, and
Lee
,
R. J.
, 2000, “
Targeted Drug Delivery via the Folate Receptor
,”
Adv. Drug Delivery Rev.
0169-409X,
41
(
2
), pp.
147
162
.
You do not currently have access to this content.