Migration of stent-grafts (SGs) after endovascular aneurysm repair of abdominal aortic aneurysms is a serious complication that may require secondary intervention. Experimental, analytical, and computational studies have been carried out in the past to understand the factors responsible for migration. In an experimental setting, it can be very challenging to correctly capture and understand the interaction between a SG and an artery. Quantities such as coefficient of friction (COF) and contact pressures that characterize this interaction are difficult to measure using an experimental approach. This behavior can be investigated with good accuracy using finite element modeling. Although finite element models are able to incorporate frictional behavior of SGs, the absence of reliable values of coefficient of friction make these simulations unreliable. The aim of this paper is to demonstrate a method for determining the coefficients of friction of a self-expanding endovascular stent-graft. The methodology is demonstrated by considering three commercially available self-expanding SGs, labeled as A, B, and C. The SGs were compressed, expanded, and pulled out of polymeric cylinders of varying diameters and the pullout force was recorded in each case. The SG geometries were recreated using computer-aided design modeling and the entire experiment was simulated in ABAQUS 6.8/STANDARD. An optimization procedure was carried out for each SG oversize configuration to determine the COF that generated a frictional force corresponding to that measured in the experiment. The experimental pullout force and analytically determined COF for SGs A, B, and C were in the range of 6–9 N, 3–12 N, and 3–9 N and 0.08–0.16, 0.22–0.46, and 0.012–0.018, respectively. The computational model predicted COFs in the range of 0.00025–0.0055, 0.025–0.07, and 0.00025–0.006 for SGs A, B, and C, respectively. Our results suggest that for SGs A and B, which are exoskeleton based devices, the pullout forces increase upto a particular oversize beyond which they plateau, while pullout forces showed a continuous increase with oversize for SG C, which is an endoskeleton based device. The COF decreased with oversizing for both types of SGs. The proposed methodology will be useful for determining the COF between self-expanding stent-grafts from pullout tests on human arterial tissue.

1.
Egelhoff
,
C. J.
,
Budwig
,
R. S.
,
Elger
,
D. F.
,
Khraishi
,
T. A.
, and
Johansen
,
K. H.
, 1999, “
Model Studies of the Flow in Abdominal Aortic Aneurysms During Resting and Exercise Conditions
,”
J. Biomech.
0021-9290,
32
, pp.
1319
1329
.
2.
Kleinstreuer
,
C.
,
Li
,
Z.
,
Basciano
,
C. A.
,
Seelecke
,
A.
, and
Farber
,
M. A.
, 2008, “
Computational Mechanics of Nitinol Stent Grafts
,”
J. Biomech.
0021-9290,
41
, pp.
2370
2378
.
3.
Resch
,
T.
,
Malina
,
M.
,
Lindblad
,
B.
,
Malina
,
J.
,
Brunkwall
,
J.
,
Ivancev
,
K.
, and
Nyman
,
U.
, 1999, “
Distal Migration of Stent-Grafts After Endovascular Repair of Abdominal Aortic Aneurysms
,”
J. Vasc. Interv. Radiol.
1051-0443,
10
, pp.
257
264
.
4.
Zarins
,
C. K.
,
Arko
,
F. R.
,
Crabtree
,
T.
,
Bloch
,
D. A.
,
Ouriel
,
K.
,
Allen
,
R. C.
, and
White
,
R. A.
, 2004, “
Explant Analysis of AneuRx Stent Grafts: Relationship Between Structural Findings and Clinical Outcome
,”
J. Vasc. Surg.
0741-5214,
40
, pp.
1
11
.
5.
Schlensak
C.
,
Doenst
T.
,
Hauer
M.
,
Moreno
J. B.
,
Uhrmeister
P.
,
Spillner
G.
, and
Beyersdorf
,
F.
, 2001, “
Serious Complications that Require Surgical Interventions After Endoluminal Stent-Graft Placement for the Treatment of Infrarenal Aortic Aneurysms
,”
J. Vasc. Surg.
0741-5214,
34
, pp.
198
203
.
6.
Lee
,
J. T.
,
Lee
,
J.
,
Aziz
,
I.
,
Donayre
,
C. E.
,
Walot
,
I.
,
Kopchok
,
G. E.
,
Heilbron
,
M.
,
Lippmann
,
M.
, and
White
,
R. A.
, 2002, “
Stent-Graft Migration Following Endovascular Repair of Aneurysms With Large Proximal Necks: Anatomical Risk Factors and Long Term Sequelae
,”
J. Endovasc Surg.
1074-6218,
9
, pp.
652
664
.
7.
Parodi
,
J. C.
,
Berguer
,
R.
,
Ferreira
,
L.
,
Mura
,
R.
, and
Schermerhorn
,
M.
, 2001, “
Intra-Aneurysmal Pressure After Incomplete Endovascular Exclusion
,”
J. Vasc. Surg.
0741-5214,
34
, pp.
909
914
.
8.
Xenos
,
E.
,
Stevens
,
S.
,
Freeman
,
M.
,
Pacanowski
,
J.
,
Cassada
,
D.
, and
Goldman
,
M.
, 2003, “
Distribution of Sac Pressure in an Experimental Aneurysm Model After Endovascular Repair
,”
J. Endovasc. Ther.
1526-6028,
10
, pp.
516
523
.
9.
Duerig
,
T. W.
,
Tolomeo
,
D. E.
, and
Wholey
,
M.
, 2000, “
An Overview of Superelastic Stent Design
,”
Minimally Invasive Ther. Allied Technol.
1364-5706,
9
, pp.
235
246
.
10.
Li
,
K.
, and
Kleinstreuer
,
Cl.
, 2006, “
Analysis of Biomechanical Factors Affecting Stent-Graft Migration in an Abdominal Aortic Aneurysm Model
,”
J. Biomech.
0021-9290,
39
, pp.
2264
2273
.
11.
Hinchliffe
,
R. J.
,
Hopkinson
,
B. R.
, and
Natarajan
,
S.
, 2006, “
In Vitro Analysis of Modular Aortic Stent-Graft Failure
,”
J. Endovasc. Ther.
1526-6028,
13
, pp.
77
84
.
12.
Arko
,
F. R.
,
Heikkinen
,
M.
,
Lee
,
E. S.
,
Bass
,
A.
,
Alsac
,
J. M.
, and
Zarins
,
C. K.
, 2005, “
Iliac Fixation Length and Resistance to In-Vivo Stent-Graft Displacement
,”
J. Vasc. Surg.
0741-5214,
41
, pp.
664
671
.
13.
Canaud
,
L.
,
Alric
,
P.
,
Laurent
,
M.
,
Baum
,
T. -P.
,
Branchereau
,
P.
, and
Marty-Ané
,
C. H.
, 2008, “
Proximal Fixation of Thoracic Stent-Grafts as a Function of Oversizing and Increasing Aortic Arch Angulation in Human Cadaveric Aortas
,”
J. Endovasc. Ther.
1526-6028,
15
, pp.
326
334
.
14.
Corbett
,
T. J.
,
Callanan
,
A.
,
Morris
,
L. G.
,
Doyle
,
B. J.
,
Grace
,
P. A.
,
Kavanagh
,
E. G.
, and
McGloughlin
,
T. M.
, 2008, “
A Review of the In Vivo and In Vitro Biomechanical Behaviour and Performance of Postoperative Abdominal Aortic Aneurysms and Implanted Stent-Grafts
,”
J. Endovasc. Ther.
1526-6028,
15
, pp.
468
484
.
15.
Conners
,
M. S.
,
Sternbergh
,
W. C.
,
Carter
,
G.
,
Tonnessen
,
B. H.
,
Yoselevitz
,
M.
, and
Money
,
S. R.
, 2002, “
Endograft Migration One to Four Years After Endovascular Abdominal Aortic Aneurysm Repair With Aneurx Device: A Cautionary Note
,”
J. Vasc. Surg.
0741-5214,
36
, pp.
476
484
.
16.
Holzapfel
,
G. A.
,
Stadler
,
M.
, and
Gasser
,
T.
, 2005, “
Changes in the Mechanical Environment of Stenotic Arteries During Interaction With Stents: Computational Assessment of Parametric Stent Designs
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
166
180
.
17.
Bedoya
,
J.
,
Meyer
,
C. A.
,
Timmins
,
L. H.
,
Moreno
,
M. R.
, and
Moore
,
J. E.
, 2006, “
Effects of Stent Design Parameters on Normal Artery Wall Mechanics
,”
J. Biomech. Eng.
0148-0731,
128
, pp.
757
765
.
18.
Gijsen
,
F.
,
Migliavacca
,
F.
,
Schievano
,
S.
,
Socci
,
L.
,
Petrini
,
L.
,
Thury
,
A.
,
Wentzel
,
J.
,
van der Steen
,
A.
,
Serruys
,
P.
, and
Dubini
,
G.
, 2008, “
Simulation of Stent Deployment in Realistic Human Coronory Artery
,”
Biomed. Eng. Online
1475-925X,
7
, pp.
1
11
.
19.
Conti
,
M.
, “
Finite Element Analysis of Self-Expanding Braided Wire Stent
,” MS thesis, University of Ghent, Ghent, Belgium.
20.
Early
,
M.
,
Lally
,
C.
,
Prendergast
,
P.
, and
Kelly
,
D.
, 2009, “
Stresses in Peripheral Arteries Following Stent Placement: A Finite Element Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
12
, pp.
25
33
.
21.
Thériault
,
P.
,
Terriault
,
P.
,
Brailovski
,
V.
, and
Gallo
,
R.
, 2006, “
Finite Element Modeling of a Progressively Expanding Shape Memory Stent
,”
J. Biomech.
0021-9290,
39
, pp.
2837
2844
.
22.
Petrini
,
L.
,
Miglivacca
,
F.
,
Massarotti
,
P.
,
Schievano
,
S.
,
Dubini
,
G.
, and
Auricchio
,
F.
, 2005, “
Computational Studies of Shape Memory Alloy Behavior in Biomedical Applications
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
716
725
.
23.
Wu
,
W.
,
Qi
,
M.
,
Liu
,
X.
,
Yang
,
D.
, and
Wang
,
W.
, 2007, “
Delivery and Release of Nitinol Stent in Carotid Artery and Their Interactions: A Finite Element Analysis
,”
J. Biomech.
0021-9290,
40
, pp.
3034
3040
.
24.
Bosman
,
W. M. P. F.
,
van der Steenhoven
,
T. J.
,
Suarez
,
D. R.
,
Valstar
,
E. R.
,
de Vries
,
A. C.
,
Brom
,
H. F.
,
Jacobs
,
M. J.
, and
Hamming
,
J. F.
, 2010, “
The Effect of Injectable Biocompatible Elastomer (PDMS) on the Strength of the Proximal Fixation of Endovascular Aneurysm Repair Grafts: An In Vitro Study
,”
J. Vasc. Surg.
0741-5214,
52
, pp.
152
158
.
25.
Vallabhaneni
,
S. R.
,
Gilling-Smith
,
G. L.
,
How
,
T. V.
,
Carter
,
S. D.
,
Brennan
,
J. A.
, and
Harris
,
P. L.
, 2004, “
Heterogenity of Tensile Strength and Matrix Mettaloproteinase Activity in the Wall of Abdominal Aortic Aneurysms
,”
J. Endovasc. Ther.
1526-6028,
11
, pp.
494
502
.
26.
2008, ASTM Standard Specification for Wrought 35 Cobalt-35 Nickel–20 Chromium–10 Molybdenum Alloy for Surgical Implant Applications, Volume 13.01: Medical and Surgical Materials and Devices.
27.
Alicea
,
L. A.
,
Aviles
,
J. I.
,
Lopez
,
I. A.
,
Mulero
,
L. E.
, and
Sanchez
,
L. A.
, 2004,
Mechanics Biomaterials: Stents. Applications of Engineering Mechanics in Medicine
,
GED-University of Puerto Rico
,
Mayaguez
, pp.
F1
F14
.
28.
Catanese
,
J.
,
Cooke
,
D.
,
Maas
,
C.
, and
Pruitt
,
L.
, 1999, “
Mechanical Properties of Medical Grade Expanded Polytetrafluoroethylene: The Effects of Internodal Distance, Density and Displacement Rate
,”
J. Biomed. Mater. Res.
0021-9304,
48
, pp.
187
192
.
29.
Budynas
,
R. G.
, and
Nisbett
,
J. K.
, 2008,
Shigley's Mechanical Engineering Design
,
McGraw-Hill
,
New York
.
30.
Liffman
,
K.
,
Sutalo
,
I.
,
Michael
,
M.
,
Brown
,
L.
,
Semmens
,
J.
, and
Aldham
,
B.
, 2006, “
Movement and Dislocation of Modular Stent-Grafts Due to Pulsatile Flow and the Pressure Difference Between the Stent-Graft and the Aneurysm Sac
,”
J. Endovasc. Ther.
1526-6028,
13
, pp.
51
61
.
31.
Simulia Inc.
, Providence, RI, USA, ABAQUS Analysis User’s Manual version 6.8.
32.
Rebelo
,
N.
,
Fu
,
R.
, and
Lawrenchuk
,
M.
, 2008, “
Study of a Nitinol Stent Deployed Into Anatomically Accurate Artery Geometry and Subjected to Realistic Service Loading
,”
J. Mater. Eng. Perform.
1059-9495,
18
, pp.
655
663
.
33.
Malina
,
M.
,
Lindblad
,
B.
,
Ivancev
,
K.
,
Lindh
,
M.
,
Malina
,
J.
, and
Brunkwall
,
J.
, 1998, “
Endovascular AAA Exclusion: Will Stents With Hooks and Barbs Prevent Stent-Graft Migration?
,”
J. Endovasc Surg.
1074-6218,
5
, pp.
310
317
.
34.
Veerapen
,
R.
,
Dorandeu
,
A.
,
Serre
,
I.
,
Berthet
,
J. P.
,
Marty-Ane
,
C. H.
,
Mary
,
H.
, and
Alric
,
P.
, 2003, “
Improvement in Proximal Aortic Endograft Fixation: An Experimental Study Using Different Stent-Grafts in Human Cadaveric Aortas
,”
J. Endovasc. Ther.
1526-6028,
10
, pp.
1101
1109
.
35.
Resch
,
T.
,
Malina
,
M.
,
Lindblad
,
B.
,
Malina
,
J.
,
Brunkwall
,
J.
, and
Ivancev
,
K.
, 2000, “
The Impact of Stent Design on Proximal EVG Fixation in the Abdominal Aorta: An Experimental Study
,”
Eur. J. Vasc. Endovasc Surg.
1078-5884,
20
, pp.
190
195
.
36.
Dunn
,
A. C.
,
Zaveri
,
T. D.
,
Keselowsky
,
B. G.
, and
Sawyer
,
W. G.
, 2007, “
Macroscopic Friction Coefficient Measurements on Living Endothelial Cells
,”
Tribol. Lett.
1023-8883,
27
, pp.
233
238
.
37.
Ikeda
,
S.
,
Arai
,
F.
,
Fukuda
,
T.
,
Irie
,
K.
, and
Negoro
,
M.
, 2004, “
Three Dimensional Photoelastic Stress Analysis on Patient Tailored Anatomical Model of Cerebral Artery
,”
IEEE Proceedings of the 2004 International Symposium on Micro-Nano Mechatronics and Human Science
, pp.
145
150
.
38.
Morris
,
L.
,
Delassus
,
P.
,
Walsh
,
M.
, and
McGloughlin
,
T.
, 2004, “
A Mathematical Model to Predict the In Vivo Pulsatile Drag Forces Acting on Bifurcated Stent Grafts Used in Endovascular Treatment of Abdominal Aortic Aneurysms (AAA)
,”
J. Biomech.
0021-9290,
37
, pp.
1087
1095
.
39.
Molony
,
D. S.
,
Callanan
,
A.
,
Kavanagh
,
E. C.
,
Walsh
,
M. T.
, and
McGloughlin
,
T. M.
, 2009, “
Fluid-Structure Interaction of a Patient Specific Abdominal Aortic Aneurysm Treated With an Endovascular Stent-Graft
,”
J. Biomed. Eng.
0141-5425,
24
, pp.
1
12
.
40.
DuPont Inc.
, Wilmington, DE, Fluoropolymer Comparison-Typical Properties.
41.
Constantinou
,
M. C.
,
Caccese
,
J.
, and
Harris
,
H. G.
, 1987, “
Frictional Characteristics of Teflon-Steel Interfaces Under Dynamics Conditions
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
15
, pp.
751
759
.
42.
Howell
,
H. G.
, 1953, “
The Laws of Static Friction
,”
Text. Res. J.
0040-5175,
23
, pp.
589
591
.
43.
Yoshida
,
H.
,
Tada
,
M.
, and
Mochimaru
,
M.
, 2006, “
3D Finite Element Analysis of the Frictional Behaviour of the Human Fingertip
,”
Proceedings of the 28th IEEE EMBS Annual International Conference
, pp.
91
94
.
44.
Ramezani
,
M.
,
Ripin
,
Z. M.
, and
Ahmad
,
R.
, 2009, “
A Static Friction Model for Tube Bulge Forming Using a Solid Bulging Medium
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
43
, pp.
238
247
.
45.
Lambert
,
A. W.
,
Williams
,
D. J.
,
Budd
,
J. S.
, and
Horrocks
,
M.
, 1999, “
Experimental Assessment of Proximal Stent Graft (Intervascular) Fixation in Human Cadaveric Infrarenal Aortas
,”
Eur. J. Vasc. Endovasc Surg.
1078-5884,
17
, pp.
60
65
.
46.
Kratzberg
,
J. A.
,
Golzarian
,
J.
, and
Raghavan
,
M.
, 2009, “
Role of Graft Oversizing in the Fixation Strength of Barbed Endovascular Grafts
,”
J. Vasc. Surg.
0741-5214,
49
, pp.
1543
1553
.
47.
Sternbergh
,
W. C.
,
Money
,
S. R.
,
Greenberg
,
R. K.
, and
Chuter
,
T. A.
, 2004, “
Influence of Endograft Oversizing on Device Migration, Endoleak, Aneurysm Shrinkage and Aortic Neck Dilation: Results From the Zenith Multicenter Trial
,”
J. Vasc. Surg.
0741-5214,
39
, pp.
20
26
.
48.
Carroccio
,
A.
,
Sharif
,
E.
,
Speilvogel
,
D.
,
Marin
,
M. L.
, and
Hollier
,
L.
, 2003, “
Endovascular Stent Grafting of Thoracic Aortic Aneurysms
,”
Ann. Vasc. Surg.
0890-5096,
17
, pp.
473
478
.
49.
Mohan
,
I. V.
,
Harris
,
P. L.
,
van Marrewijk
,
C. J.
,
Laheij
,
R. J.
, and
How
,
T. V.
, 2002, “
Factors and Forces Influencing Stent-Graft Migration After Endovascular Aortic Aneurysm Repair
,”
J. Endovasc. Ther.
1526-6028,
9
, pp.
748
755
.
You do not currently have access to this content.